Protective Effects of Selenium-enriched Bifidobacterium longum DD98 on X-Ray Radiation-induced Hepatic Tissueinjury in Mice
Article
Figures
Metrics
Preview PDF
Reference
Related
Cited by
Materials
Abstract:
The purpose of this study was to examine the protective effects of selenium-enriched Bifidobacterium longum DD98 (Se-DD98) on X-ray-induced hepatic damage in mice were investigated. Male SPF-grade balb/c mice were randomly divided into 5 groups: normal control group, radiation control group, Se-DD98 high-dose group, Se-DD98 low-dose group and DD98 control group. After 28 days of administration, the body weights of mice were monitored. Whole body X-ray irradiation was used on the 29th day, and then relevant indicators were measured after the experiment. Compared with the body weight (24.44 g) and liver index (4.49%) of the radiation control group, the body weight (26.96 g) and liver index (5.10%) of the Se-DD98 high-dose group increased significantly, with the levels of their serum liver function indicators (ALT, AST) and body oxidative stress indicators (MDA, LDH) decreasing significantly, and the activities of their antioxidant enzymes (CAT, SOD, GSH-Px) increasing significantly. Real-time fluorescent quantitative PCR results showed that the expression of Sod1 (3.58) and Gpx1 (7.14) in the liver of the Se-DD98 high-dose group was significantly up-regulated (by 16.41 and 10.19 times, respectively), and the expression of pro-inflammatory factor IL-1β (2.16) was significantly down-regulated (by 1.61 times). The mRNA levels of hepatic Sod1 (3.58) and Gpx1 (7.14) were significantly up-regulated respectively by 16.41 and 10.19 times in Se-DD98 high-dose group. In addition, both the high- and low-dose Se-DD98 groups could reduce X-ray-induced liver damage. Finally, the indices of the Se-DD98 high-dose group differed very little from the normal control group but differed significantly from the radiation control group. Therefore, Se-DD98 can alleviate X-ray-induced hepatic damage in mice through reducing the level of oxidative stress, boosting the activities of the antioxidant enzymes and inhibiting tissue inflammation.