Preparation and Drug-delivery of Composite Hollow Polyacrylic Acid-coated Magnetite Nanoparticles
Article
Figures
Metrics
Preview PDF
Reference
Related
Cited by
Materials
Abstract:
The surface of hollow nanoparticles of magnetite (Fe3O4) with an inverse spinel structure was modified by (3-aminopropyl)-triethoxysilane (APTES), followed by coating with polyacrylic acid (PAA) to synthesize pH-sensitive, composite Fe3O4@PAA, hollow magnetic nanoparticles (HMNPs) via chemical crosslinking. The morphology, structure, magnetism, encapsulation ratio before and after encapsulation were analyzed by transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), laser particle size analysis, Fourier transform infrared (FT-IR) spectrometry, and ultraviolet (UV) spectrophotometry techniques., Drug loading and drug release efficiencies of these nanocomposites were investigated in vitro by using rhodamine 6G (R6G) as a model drug. The composite Fe3O4@PAA nanoparticles showed excellent magnetic property, and T maximum adsorption capacity was found to be 1011 mg R6G per 1.00 g Fe3O4@PAA nanoparticles. The maximum drug delivery rate for R6G release from the composite magnetic particles was 93.0%, and the drug delivery dynamics followed first-order kinetics. Additionally, the possible mechanism based on molecular solubility was explored. The results demonstrated that the composite drug loading system, based on magnetic nanoparticles and polymer materials could help to enhance the performance of targeted drug delivery and improve the efficiency of diagnosis and treatment.