Neuroprotective Effects of Soybean Protein Isolate Hydrolysates against Neuronal Oxidative Damage in PC12 Neuronal Cells
Article
Figures
Metrics
Preview PDF
Reference
Related
Cited by
Materials
Abstract:
The neuro-protective effects of soybean protein isolate hydrolysates (SPIHs) against neuronal oxidative damage were investigated in a PC12 cell model in this study. Four hydrolysates with different molecular weights were obtained from soybeans (raw material) through enzymatic hydrolysis and membrane separation. The antioxidant properties of the SPIHs were also investigated. Subsequently, a neuronal oxidative damage model was constructed by stimulating PC12 cells with H2O2. SPIHs at appropriate concentrations were used to treat the damaged cells; the effect of SPIHs on cellular oxidative damage was evaluated using various biological indices. The results of these analyses indicated that low molecular weight SPIHs exhibited the most potent antioxidant activities, and caused a dose-dependent improvement in the neuronal cell viability, reduction in lactate dehydrogenase (LDH) release and malondialdehyde (MDA) formation, and suppression of intracellular accumulation of reactive oxygen species (ROS) (p < 0.05 or p < 0.01). Based on the results of this study, low molecular weight SPIHs were believed to protect neuronal cells against neuronal oxidative damage, and could be utilized as a functional component in functional food and health products to protect against neuronal oxidative damage.