基于机器学习的植物乳杆菌LP1Z高密度发酵培养基优化
CSTR:
作者:
作者单位:

作者简介:

吴家琳(1998-),女,硕士,研究方向:功能微生物开发利用,E-mail:wujl9821@163.com;共同第一作者:李滢(1985-),女,博士,研究方向:健康功能微生物的挖掘与开发,E-mail:liying@gdim.cn 通讯作者:吴清平(1962-),男,博士,研究员,研究方向:微生物安全与健康,E-mail:wuqp203@163.com;共同通讯作者:陈谋通(1984-),男,博士,研究员,研究方向:食源性致病菌危害形成与靶向控制,E-mail:cmtoon@163.com

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(2022YFD2100703);国家自然科学基金项目(32222068;32072326);广州市科技计划项目(2024A04J6592)


Machine Learning-Based Optimization of High-density Fermentation Medium for Lactiplantibacillus plantarum LP1Z
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前常用的培养基优化方法是单因素分析结合响应面法的配方设计,但该方法预测变量有限且较难反映菌株复杂的代谢网络,导致配方优化效能有限。该研究以高效拮抗幽门螺杆菌的专利菌株LP1Z作为研究对象,对菌株发酵培养基各组分在单因素优化基础上,利用三种算法(随机森林、深度神经网络和梯度提升决策树LightGBM)分别构建高密度发酵培养基成分优化预测模型,对比不同算法所获得预测模型的准确性及其与响应面法的差异。结果显示,LP1Z-LightGBM预测模型的Pearson相关系数、R2最接近1,且均方根误差(RMSE)低至0.02,具有最优的预测效能。通过LP1Z-LightGBM预测获得的最优方案:葡萄糖30.00 g/L,硫酸镁0.30 g/L,硫酸锰0.03 g/L,乙酸钠7.00 g/L,酵母粉12.00 g/L,柠檬酸三铵2.00 g/L,磷酸氢二钾1.00 g/L,吐温-80 2.00 mL/L,使LP1Z的菌体发酵密度(OD600)达1.61,明显优于响应面法所获得的菌体密度(P<0.05)。综上所述,与传统的响应面法相比,LP1Z-LightGBM能更好地完成菌株密度的预测。

    Abstract:

    The single-factor analysis combined with the response surface method (RSM) is usually applied for bacterial medium optimization. However, the variables predicted by this method are limited, and it is difficult to reflect the complex metabolic network of strains, limiting its ability to optimize the formulation. This study focuses on the patented strain Lactiplantibacillus plantarum LP1Z, known for its high antagonistic efficacy against Helicobacter pylori. On the basis of single-factor optimization, random forest, deep neural network, and gradient boosting decision tree (LightGBM) were used to construct the optimal prediction model of high-density fermentation medium components. The accuracy of this prediction model and its performance compared to RSM were evaluated. The results indicated that the Pearson correlation coefficient and R2 of the LP1Z-LightGBM prediction model were close to 1, and the RMSE was as low as 0.02, with the best prediction efficiency. The optimal formula of high fermentation medium was obtained by LP1Z-LightGBM prediction, which includes glucose 30.00 g/L, MgSO4 0.30 g/L, MnSO4 0.03 g/L, CH3COONa 7.00 g/L, yeast powder 12.00 g/L, C6H5O7(NH4)3 2.00 g/L, K2HPO4 1.00 g/L, and Tween-80 2.00 mL/L. The density of LP1Z cultured in the optimal fermentation media reached 1.61 (OD600), which was significantly higher than that obtained by RSM (P<0.05). In conclusion, compared with the traditional RSM, LP1Z-LightGBM offers superior predictive capability for the optimization of high-density fermentation medium.

    参考文献
    相似文献
    引证文献
引用本文

吴家琳,李滢,王涓,陈玲,黄士轩,周润,黄惠书,张菊梅,高鹤,吴磊,赵辉,陈谋通,吴清平.基于机器学习的植物乳杆菌LP1Z高密度发酵培养基优化[J].现代食品科技,2025,41(4):131-140.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-03-14
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-05-08
  • 出版日期:
文章二维码