[关键词]
[摘要]
本文采用紫外光谱(UV)、傅里叶红外光谱(FT-IR)、荧光光谱和扫描电镜(SEM)等技术研究不同溶解环境下(甲醇、乙醇、异丙醇、乙酸和丙酮)zein蛋白的溶解、聚集和结构性质,用静态接触角研究zein蛋白膜的表面疏水性。结果显示Zein在100%乙酸和80%乙醇和异丙醇溶液中呈现出良好的溶解状态和较高的透光率;其次,在70%乙酸溶液中粒径最大,为5230.16 nm;在80%乙醇溶液中的粒径最小,为25.52 nm。异丙醇使zein表现出强荧光吸收。80%乙酸和乙醇溶解的zein蛋白与容器接触一侧的接触角为88.90°和86.60°,表现出中性润湿性,适合稳定油水界面;从80%甲醇溶液中形成的蛋白膜的空气侧接触角最大,为72.10°。综上分析表明,溶剂浓度差异影响蛋白质与水的相互作用力导致蛋白聚集程度不同。此外,溶剂极性和电负性差异通过影响分子间疏水相互作用和氢键以及二硫键的形成,进而影响蛋白粒径、表面疏水性和空间构象。
[Key word]
[Abstract]
The dissolution, aggregation, and structural properties of zein in different solvents (methanol, ethanol, isopropanol, acetic acid, and acetone) were studied using ultraviolet spectroscopy, Fourier-transform infrared spectroscopy, fluorescence spectroscopy, and scanning electron microscopy. The surface hydrophobicity of the zein protein film was determined by static contact angle measurements. Zein showed good dissolution in 100% acetic acid, 80% ethanol, and isopropanol solutions, and the resulting solutions exhibited high light transmittance. A maximum particle size of 5230.16 nm and a minimum particle size of 25.52 nm were obtained when zein was dissolved in 70% acetic acid and 80% ethanol solutions, respectively. Zein dissolved in isopropanol showed high fluorescence absorption. Zein dissolved in 80% acetic acid and ethanol solutions showed contact angles of 88.90° and 86.60°, respectively, with the containers, suggesting neutral wettability and suitability of the solutions for stabilizing oil-water interfaces. The air-side contact angle of the zein film formed in 80% methanol solution was the largest (72.10°). These results revealed that the solvent concentrations affected the water-protein interactions, thereby resulting in different aggregation degrees of the proteins. In addition, differences in the solvent polarity and electronegativity also affected the particle size, surface hydrophobicity, and spatial conformation of the protein by changing the hydrophobic interactions between the molecules and formation of hydrogen and disulfide bonds.
[中图分类号]
[基金项目]
国家自然科学基金资助项目(31660481;32060583)