不同储藏年限绒柄牛肝菌紫外&红外光谱数据融合鉴别研究
CSTR:
作者:
作者单位:

作者简介:

张钰(1992-),男,在读硕士研究生,研究方向:牛肝菌光谱分析 通讯作者:刘鸿高(1974-),男,博士,教授,研究方向:食用菌资源评价改良及利用;王元忠(1981-),男,在读博士研究生,副研究员,研究方向:药用真菌研究

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(31660591、21667031);云南省教育厅科学研究基金项目(2016ZZX106);云南省高校食用菌资源开发与利用重点实验室建设项目资助


Research on Identification of Boletus tomentipes with Different Storage Period by UV and FT-IR Combined with Data Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    野生食用菌干品长时间储藏会引起微生物增殖、物理及化学变化,影响其商品品质,为保证其质量安全,亟需建立快速有效的方法,鉴别不同储藏年限野生食用菌。本研究采集5个储藏年限,77个绒柄牛肝菌子实体的紫外(UV)与傅里叶变换红外(FT-IR)光谱,采用卷积平滑(SG)、二阶导数(2-D)、标准正态变量(SNV)等方法对光谱进行预处理,结合偏最小二乘判别分析(PLS-DA),建立UV、FT-IR、低级和中级数据融合模型。结果显示:UV与FT-IR光谱最佳预处理分别为SG+2-D和SG+2-D+SNV;UV、FT-IR、低级和中级数据融合模型,总样品分类错误数分别为10、6、4、3,且中级数据融合的R2cal平均值最接近于1、RMSECV平均值最小,表明中级数据融合分类效果,优于UV、FT-IR和低级数据融合。采用UV与FT-IR中级数据融合策略结合PLS-DA,能够准确鉴别不同储藏年限牛肝菌样品,为野生食用菌品质评价提供一种新思路。

    Abstract:

    Long term storage of wild edible mushrooms would cause microbial proliferation and physico-chemical changes, affecting the quality. In order to ensure the security and quality, it was essential to establish a quick and efficient method to identify wild edible mushrooms with different storage periods. Ultraviolet (UV) and fourier transform infrared (FT-IR) spectra of 77 fruit bodies of B. tomentipes (5 years of storage) were preprocessed by using Savitzky-Golay (SG) smoothing, second derivative (2-D) and standard normal variate (SNV), and UV, FT-IR, low-level and mid-level data fusion models were established with partial least squares discriminant analysis (PLS-DA). The results showed that the optimal pretreatment of UV and FT-IR spectra were SG+2-D and SG+2-D+SNV, respectively, and the classified individual errors were 10, 6, 4 and 3 in UV, FT-IR, low-level and mid-level data fusion models.Theaverage of R2cal in mid-level data fusion model was closest to 1, and the average of RMSECV was minimum , which indicated that the effects of mid-level data fusion model were better than those of other three models. The UV and FT-IR mid-level data fusion strategy combined with PLS-DA could accurately identify the B. tomentipes with different storage periods, which provided a novel reference for quality evaluation of wild edible mushrooms.

    参考文献
    相似文献
    引证文献
引用本文

张钰,李杰庆,李涛,刘鸿高,王元忠.不同储藏年限绒柄牛肝菌紫外&红外光谱数据融合鉴别研究[J].现代食品科技,2018,34(2):218-224.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-08-24
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-03-09
  • 出版日期:
文章二维码