本平台为互联网非涉密平台,严禁处理、传输国家秘密、工作秘密或敏感信息

基于直线截距直方图的Arimoto熵或Arimoto灰度熵的食品图像分割
CSTR:
作者:
作者单位:

作者简介:

吴一全(1963-),男,博士,教授,博士生导师,主要研究方向为图像处理、机器视觉检测与图像测量、模式识别

通讯作者:

中图分类号:

基金项目:

江苏省乳品生物技术与安全控制重点实验室资助项目(K13054);江苏省食品先进制造装备技术重点实验室开放课题资助(江南大学)项目(FM-201409);江南大学食品科学与技术国家重点实验室开放课题资助课题(SKLF-KF-201310);农业部东海海水健康养殖重点实验室基金资助(2013ESHML06);江苏高校优势学科建设工程资助项目(2012)


Line Intercept Histogram-based Arimoto Entropy or Arimoto Gray Entropy for Food Image Segmentation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    食品生产中涉及到的食品种类繁多且必须满足国家相关食品安全标准,为此要求食品图像分割方法必须速度快、准确性高、普适性强。利用基于二维Arimoto熵或二维Arimoto灰度熵的阈值选取方法对食品图像进行分割,算法复杂度高,难以满足实时性要求。针对这一问题,提出基于直线截距直方图的Arimoto熵或Arimoto灰度熵的食品图像分割方法。首先给出直线截距直方图的定义,然后根据此定义建立图像的直线截距直方图,最后计算基于此直线截距直方图的不同灰度级的Arimoto熵或Arimoto灰度熵,当该熵达到最大时,对应的灰度级即为图像的最佳分割阈值。针对此方法,对多种食品图像进行了大量的试验,通过与现有的基于一维和二维Arimoto熵、Arimoto灰度熵的分割方法对比,发现本文方法在综合提升算法速度和改善分割效果上,性能更优。

    Abstract:

    In food production, the numerous kinds of foods produced have to meet the applicable national food safety standards. Therefore, methods for food image segmentation should be rapid with high accuracy and high universality. In food image segmentation methods based on the threshold of two-dimensional Arimoto entropy or two-dimensional Arimoto gray entropy, the algorithm is highly complex. Hence, it is difficult to meet real-time requirements. To solve this problem, a method using line intercept histogram-based Arimoto entropy or Arimoto gray entropy for food image segmentation was proposed. First, the line intercept histogram was defined, which was followed by building of the line intercept histogram of images according to this definition. Finally, Arimoto entropies or Arimoto gray entropies of different gray levels in this line intercept histogram were calculated. When the maximum entropy was reached, the corresponding grayscale was determined to be the optimal image segmentation threshold. Several experiments were performed on different kinds of food images by using this method. Compared with the existing segmentation methods based on one-dimensional and two-dimensional Arimoto entropy and Arimoto gray entropy, the method proposed here can achieve better performance by increasing algorithm speed and improving segmentation results.

    参考文献
    相似文献
    引证文献
引用本文

吴一全,龙云淋.基于直线截距直方图的Arimoto熵或Arimoto灰度熵的食品图像分割[J].现代食品科技,2016,32(1):164-169.

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-04-04
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-01-28
  • 出版日期:
文章二维码