0 Đ L786àG¬\$1/0\$5(â LG®@ > F "ïG® ¾G® Đ"ïG®+N"ï ?G¥

íܹ,‹ìp¹,åŠUϹ,TúF²,"6&²,90K,¹,1\(³,g#3˹,NÒ¹,/î¹ 'ÊœÖ0ª60]œJ~_Ÿª6cÿ^7\$¬rÉœJœ< œJRš\"^3

• «d œ Jœ < œ J%% — 8% ° 6 «d œ J/V

Ž?•Æ∃- 6 -2-• 6 -3-P 6% 8a OPL ¾ \$/V')¦N é ^{~ oa}6{\$\$ Ð ËrpNtíø...G\$ » ANL-MARE Â\$%•OPL °¥dËrN_%•ä¶øt...G\$ ANL-MARE É» ANL-MARE "^Â\$"ÙKt¢5 8• 6% 8a OA äP 6 PPPc 6 LA : OPL « æ N] ¼ ! PPP 0 ™ » 6 ÒÂ\$%•à OPL r º¥d<æÙ-ä¹ëKËr\$f iš' 1:14.27 OA 0 LA iš' 1:0.76 » ¦h 12.70% ±ë1g 50 § ±ë 4 h ® "Ñ•!^/ sn-2 PA - s à h OPL-sÃh 47.93%2*•6 sn-2PA½™•6 PA)hÓô 71.69%d® ó ...G\$ ANL-MARE 0ece » -'¶£{ Ú Â\$æN OPL cÿd[~]hNí …G\$ ANL-MARE n Â\$%• OPL r 7ÖŽO \$™Ý :Ò%•"btí Ûä8ân"d

©KdB Æ- 6 -2- • 6 -3- P 6% 8a" ¼ 6 ¥"...G\$ » * ANL-MARE "] ¼ \$ ½1 5L - Æ1673-9078(2024)02-109-119 DOI: 10.13982/j.mfst.1673-9078.2024.2.0196

Synthesis of 1-Oleic Acid-2-Palmitic Acid-3-Linoleic Acid Triglyceride via

Enzymatic Acidolysis by Immobilized Lipase ANL-MARE

KANG Meng¹, HE Jiaqiang¹, FENG Konglong¹, HUANG Zaocheng², LI Yifeng², MIAO Jianyin¹,

FU Jiangyan³, ZHU Zerong¹, LIU Guo¹, CAO Yong¹

 (1. College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangzhou 510642, China) (2. Guangdong Huiertai Biotechnology Co. Ltd.,
 * X D Q J] K R X & K L Q D * X D Q J G R Q J 0 H L Z H L [L D Q) O D Y R U L Q J) R R G V Abstract: 7 K H G H P D Q G I R U L Q I D Q W I R U P X O D V L P L O D U W R E U H D V W P L O N L V J U R Z L catalytic preparation of 1-oleic acid-2-palmitic acid-3-linoleic acid triglyceride (OPL), the main lipid component in human P L O N X V L Q J D Q H Z L P P R E L O L] H G O L S D V H \$1/0\$5(7 K H L P P R E L O L] H G O L S D V H E · 1? Ö

ç Ö, ... æ j, ß "UÉ, 1y. * Ê F726ÚG¦ANL-MARE Ü FG[°]@ 8 @-"éG[°]-2- _,G[°]-3- Ê"éG[°]+H"é 9GŸ [J].)à O ñ 0 °,2024,40(2):109-119.

KANG Meng, HE Jiaqiang, FENG Konglong, et al. Synthesis of 1-oleic acid-2-palmitic acid-3-linoleic acid triglyceride via enzymatic acidolysis by immobilized lipase ANL-MARE [J]. Modern Food Science and Technology, 2024, 40(2): 109-119.

l0u U Ö2023-03-05

0H N⁻-\$ Ö µR-70 ¶ »H&ï	ÔPÂ ÚN⁻-\$ - µ R-7 Õ73O ÷#q](ŸH &ï ÔPÂ Ú	Ä2018B030322010Å×µ8H&ï.JA×HN⊺-\$	ÄSL2022B03J01001Åx o
§ 80 ¶ vN⁻-\$ - μ EG§"	ïO ©ÝID °73 IFV.J0¬ Q æLUN⁻-\$ ÄCXT	D2020006 Å	
'6;1¶ ÖíÜÄ1998Å	©È.‹!È.J0¬ïGÖO ÷Ö D¿žÈE-mail	Ökangm1189@163.com	

FPAå '6; Ö / î Ä1966萬 +m È • ! È • ¾ È.J0¬ ï G ÖO ÷ L œ à _'I Ý(Ÿ L œ ÈE-mail Öcaoyong2181@scau.edu.cn

FKDUDFWHUL]HG 1H[W DQ HI¿FLHQW HQ]\PH FDWDO\]HG SUHSDUDWLRQ RI OLSL DQG OLQROHLF DFLG ZDV HVWDEOLVKHG XVLQJ \$1/ 0\$5(DV WKH ELRFDWDO\VW VXUIDFH H[SHULPHQWV WKH RSWLPDO 23/ V\QWKHVLV SURFHVV ZDV REWDLQHG fatty acids molar ratio of 1:14.27; an oleic acid:linoleic acid molar ratio of 1:0.76; the addition of 12.70% ANL-MARE; a reaction temperature of 50, and a reaction time of 4 h. Under these conditions, the relative OPL content reached 47.93%, and sn-2 SDOPLWLF DFLG DFFRXQWHG IRU RI WKH WRWDO SDOPLWLF DFLG FRQWHQW UH

WKH LPPRELOL]HG OLSDVH \$1/ 0\$5(VKRZHG EHWWHU FDWDO\WLF DFWLYLW\ WKDQ WKH LPPRELOLIHG OLSDVH \$1/ 0\$5(KDV VLJQL; FDQW SRWHQWLDO WR FDWDO) H WKI SURYLGHV D QRYHO VWUDWHJLFDO DQG WKHRUHWLFDO EDVLV IRU WKH HIZFLHQW SUI

Key words: 1-oleic acid-2-palmitic acid-3-linoleic acid triglyceride; enzymatic acidolysis; immobilized lipase; ANL-MARE; process optimization

!ý £ _ ¤ o+OK⁻ 6â, ´*6 #:U «3P Ä £726Ú 45%~55% È ü [J =Oi ¼72 •!ý £] p [7-Gÿ, 6ÚG⁻⁻ ¼ õM0726ÚG⁻⁻ ú Ï7- W72CX È) j f, ´ 6â ¼ • ç8# £Gý?[£][≥]Ä⁹,3- ¼ =Oi ¼726ÚG2-. G " + H " é 9 G, S-D-Unsaturated Fatty Acyl-2-PalmitoylglycerolsÈUPU Å _!ý £72CX, í k?± î X '?È=O;¼726ÚG¨k?±X+H"éPØæ,´0ûfÊA }5žÄ6WHUHRVSHFL;F 1XP1E1/al3ULQJÈLSNA ÄÄQPL, f7G¦óG"@#jkÈk?± GŸ F È6<Oi ¼726ÚG GPaÄmitic Acid ÈPAÅ Ä4Ö60%~70% ÅGŸ F \$m-2 } ^{Ø>}ȰF^Ø/ý5 ', '+H ĵj¤¬o "é 9GŸÄriacylglycerolÈTAG Å)72CX ¼./(™CX, ´#, F ¼ h f à óF PØPì 6â ¼ 6ĐFf • ç Ã i '>p\$5 ¼6ĺ7?, '+H"é 9GŸ ¼6ö *G· "d £ óF 72CX BR ÿ A72CX0 3^{0 >} È[®]0 of ¤ o+OK⁻ 6â § 9Gý?± Œ[#]XÄ[®]^µ]È 1- "éG⁻-2-.G⁻⁻-3- Ê⁻ éG⁻⁻+H⁻ é 9G⁻ H-Öleoyl-2-Palmitoyl-3-LinoleoylglycerolÈOPL Å ¼1,3- ¼"éG-2- G +H"é 9GŸ Ä3-Dioleoyl-2-PalmitoylglyceroÈOPO Å _!ý £] Y'f ^ X, ´ T/ý k?± UPU5 ´72 È ¦ [Gÿ = < - æ ¼ `), OžO • 6< 2 Ä OPL _ Ê#b!ý £] 0 ` ü, 72CX È T ¦ _ X] -!ý £] Ä17.85%~33.02% [™]Ä[®] [¶]"È OPL X ¤ o,´@K⁻] UGý?± Œ+X^Ø[>]Ä[®]f[®]< È+a ¾!ý £ ² « =Cã F5j •È ú(<£¼=(™"é•\$À,´¤oG}é¦2¹] ~ = [OPL^{Ø >} È D^Ø¦72CX5 ´ W J jO; ¼726ÚG[•] • ž X sn-1,3 } ÈK⁻ O t • ¡ ý72CX ¼./(™CX,´ h f Y +X È= Y ¾ ¤ ¬ o+OK⁻ 6â È C ,8\$ ï0 [∅]²Ä[®]₽́È ê£/72 OPL, ´8 @ § 9Gý?±? y ÈF) f 7 ¼ 0 0/ý >] - ê £726ÚG"5 ´ ¼ 6 32« l, ´ ê £ 72 / ñ § 9Gý?± Ä+X } Ÿ Ä

F ¤ • È5 '72CX, 'G¦# f 7+a ¾ ¦ ý Ä ' &

\$Y ¼ Ã Ü F x) Q Ã)ß 1y H&é #£#Ȧ f 7 é# 6 jGŸ F# ÃG¨@ # ÃEœGŸ F# 1y^{ø >}ÄĜ¦ óG["]@ # ý Ä\$Y ¼ Ã 8ª1° ... È Ë ¶ 0/ý 6 pM0 , ′726ÚG¨ 8 ¦ ` TAG , ′(© Ê }5ž 9+X, ′ é# È _ 9ç Ç ü [(©!º726ÚG", TAG 0-\$ Õ, é ? ^{Ø >} Ä[®]}^ØÈ - F 1 J, ´ ê £72 / 72 OPO ~• ž¶A-¤ ¬o×ñ, ~G 2jÈ6< OPL+O x 8^a ý 4 X.D0 .œ72 >"éG" Ölleic Acid ÈOA Åà Ê "éG" Älinoleic Acid ÈLA Å F65 ü [OA ¼LA , ´ =(™"é j Ï É X *Ê F726ÚG¦,´Ü F Œ+X ; 8 @[∅]> ÄŴang1y[∅]>G[@] +XG"@# .œ72 > OA ÃLA Ä ™ D" 1:7:7 Å j Å(™ Ï É È\$+ Ð10% NS40086726ÚG¦ Ê0 ý Ä 4 h È9ç Ç ×(™] [47.93% OPL Èsn-2 PA() [Gÿ j 87.90% Ä – 01 y ^{Ø >} [®]P⁹PP ¼ ü [OA ¼ LA ,´ '7&2-"é j Å(™ Ä ™ D" j 1:7 ÅÈ\$+ Ð10%,´ Novozym 40086X 55 ý Ä 12 h È9ç ÇOPL-() [Gÿ j 42.35% Ä'f6< ÈUPU5 ´72?ô Q F+O × L€ ¾ v J F726ÚG¦ ^ X, ´ ° _ ñ Â ÄF v J726Ú G¦, ´Q @ \ ú ü [sn-2 PA"é72 Å(™ •\$À, ´5j • È L€ f¶ - µ ê £ / 72, ´ × J F È ,8\$F OPO ^{Ø >} Ä[®].[®]D0¦ LO } O.D0¦ $\frac{1}{4}$ OPL × ñ ' l uQ = ; * § 9Q Ü F x)· ÃQ 0c Ê W, ´ * Ê F726ÚG¦ È / - F v JG¦ f r È " @ Ï Ä+X ¾Q G¨ ' WBv"é ,′7aG¨ ¼ …+H"éGŸ Ã+H"é ¼GŸ,′+O(™ 8ै°@Ä^{@ ∅}

 $.D0^{\circ}OE \times f7 \frac{1}{2} \approx E FG^{\circ} + ANL-MARE$ Œ j+O(™ Ü F r È \$æ r 6 # üLö Ç `, ´ 9 、 G"+H"é 9GŸ Äripalmitin ÈPPP Å ú726ÚG" ÄOA Ã LA Å Œ j Ï É ÈG¦ óG¨@ # f 7 ü [OPL, ´5 ´ 72 È O j ó F Q I F ê £72 / 72 OPL, Gl# f 7 J ... ¼ Î)à ~ @ \ x J F Ë*6Aê ò63 Ä

† Ï D ï#

1.1 材料与试剂

58 .œ72 ÈC]8 ,ú#§ 9Gü ⁻ 2Þ"é 9L€ œ (×LA ÃOA w j 6 À4ß ÈC]8 :#§5‡ ™B rœ(× 7 726ÚG¦ ÄJSP4×È § 9 sn-1,3(© 2 W ÅÃ37/ý72 6ÚG"+bGŸ\$'87öñÈ8¢Ba4ßÈC]8 : **\$**§gma-Aldrich œ (xPPP ÃOPL 7 ö ñ w j8¢Ba4ß ÈC] 8 *Ž " Larodan œ (x * Ê F726ÚG¦ NS40086 Ä • \$À ¾\$ V S H U J L O OÈ X* VÊ BX UI'\ [OD HA 72 Å ¼ Lipozyme 435 Ä •\$À ¾& DQGLGD \$ÈQ* VÊ DXUF W\$65#fâ DÈ f @ 0.50 mg/mL, 726 ÚG !#â Ä0 F2G ÿ4 ÿE÷ I' G¨ A72 ÅC]8 iTÖB*5\$ œ (×8¢Ba4× ‰7x Ã 2 IG· Ã+bG· Ã!" !" È wC]8 !W \$ { F - œ (× ; ′ r8¢Ba.u7& ⁻ Ä 10 cm×20 cm ÅÈC]8 ⁻ Ÿ Ç °œ (×726ÚG¦ \$VSHUJLOlio2a&eVÄA0QuLÄA0/HU " I' G¨ A72 È+a ⁻ L-1 Ï7-O ñ#k W(™Gý&é ÎP¼ ÔËÄ

1.2 主要仪器与设备

SEDEX 80 »:è y " 4 ð#{ ~ Ä Evaporative Light Scattering Detector ELSD ÅE# - SEDEX œ (×LC-10A »#â-(8¢Ba ÄLC ÅÈ ∖Ë#U xHP 6890-5973 » "D-(8¢BaCXBa6, +X GC-MSA DB-WAX " 4ö1Ñ ! È w •8 5¾ - 1 § V œ (× Dionex Acclaim C308¢Ba.u7&! È5¾ - 7 K H U P R 6 Fot H Q W L ξ F ... G \$ k ... G \$ O ; $f \cdot i / \div \%$

(×R204B3 » ûEœ:è È:#§+c+O0 ° 9L€ œ (× N-EVAP »"^ i È5¾ organomationœ (Ä

1.3 实验方法

\.D0¦G÷+XG¦ óG["]@ # 8 @OPLÈ PPP ÃOA ¼ LA Œ j ý Ä Å(™ ÈG÷+Xsn-1,3 }(© 2 W726ÚG¦ ANL-MARE G¦ óG[°] @ # f 7 OPL È8ªD 4ï ². 1 Ä

& BF¢ "/- . " 3 & F¢ ïF/? " 4 < 0 1 - 7fC 3° Fig.1 Process route for the synthesis of OPL using immobilized enzyme ANL-MARE enzymatic acidolysis _!PPP!8• 6% 8a" 2-MP !2- • 6 æ % a L !P 6" OPL ! 1- 6 -2- • 6 -3- P 6% O!6" 8 a d

72] 6 üLö PPP È Œ j >5 8ª] sn-2 PA, 'Ë f •\$À ÄL¿ > È Đ • OA ¼LA X sn-1,3 }(© 2 W ,´*ÊF726ÚG¦ANL-MAREŒ+X; PPP] sn-1,3 }726ÚG" È9ç Ç OPL Ä

1.3.1 ANL-MARE » ... G \$ f ¶ ø 1.3.1.1 726ÚG¦, ´* Ê F

iž Feng1y⁰>, "e[#] +• 9 iÈ F2Gÿ726Ú G¦ ANL 6 " ¾ 20 mmol/L/'G"- 5C â\$æ#â ÄpH I 5.6 Å] È4 È10 000 J '& ;/ë ó 10 min È : 5C â- \$æ#â#Ö#G, ´ W " I' G" A72 È 6 " ¾726ÚG 150 r/min, FO ÖF 5 5 ü 6 h È 726Ú #â]Ȧ G¦ ¼ A72 u 6 Õ@ Ä 0 > È5C â\$æ#â%2#G * Ê F72 6ÚG¦>~M'!»+‰, 726ÚG¦È¦X45 -O0ª¢(5 h Ä 1.3.1.2 <û,-CX hLt), #{ Ê

<û,-CX [Gÿ#{ Ê ÖG÷+BXCA # #{ Ê<û,-CX [GÿÄ*ÊFG¦<û,-CX hLt), ´AÑ1C œ?2;Ö

AkkñB)k Ñ PL

 $X_1 k k \dots G \$ k \bullet$ $i / \tilde{n} B h$ mg '

ñ Bh mgd 1.3.1.3 * Ê FG¦G¦#k Ë ð#{

ò'— GB/T 23535-2009 É726ÚG¦ f r ÊF >| È AÑ1CG¦, (" #k Ë Ä1°@0 { \$±0 mL 9@ +&] Đ • 4 mLCXGÿ6 4%, 6Љ'G·-t "'é£F#âÄ V/VÅ 1/45 mL 0.025 mol/L/G "5C â#â Ä pH I 7.5 ÅÈ'f > Đ • F2Gÿ, 726ÚG¦ È37 ýÄ 15 min > È Đ• 15 mL f0 6 95% ‰G·\$æ#â\/Ä/ Å4ø!' ý Ä È+X 0.05 mol/L NaOH\$æ#â%\$ Ê È GŠGŽ j 7/j r È < & Š0ª,-4ô Ä 1.3.1.4 * Ê FG¦, ´> ˜ ±

iž Liu 1y^ø, ^e#ÈG÷+XμGü& '4ÒFy Ba ÄFourier Transform Infrared Spectroscopy, FT-IR Å 6 À ANL-MARE 726ÚG * Ê F } >, ´ È7- F È 6 À726ÚG¦ X A72 : * Ê F, ´0; Ö Ä

1.3.2 PPP Ó",

PPP^{Ø >} Ä^{@ Ø} G÷+X\$ær6 # þ 58 _.œ72]üLö > .œ72\$'8ÈX 38 M‰5ž4hȵPPPÀ*> EõFO í% ÈL; > 6 p Ç.œ72 X0 ûEœ:è 7a ë

\$æ r È9ç ÇQ 4/₽PP ×(™ Ä 6 ×(™ LC-ELSD ð #{ PPP [Gÿ ÈGC-MS ð#{726ÚG¨ Ä

1.3.3 OPL 1/4 6 æ N

1.3.3.1 OPL, 'G¦ óG" @ ... 3PB P¼

iž } O.D0¦ *.pÈHF; ýG¦ óG¨@ýÄ,´ Z£K^;ý3PÄ66 üLöÇ`,´ PPP > OA¼ LA 9 0 Ê ™ D" ÄOA > LA ™ D" j 1:0.5 Ã 1:0.75 Ã1:1 Ã1:1.25 Ã1:1.5xPPP > k726ÚG", ´ Å(™ ™ D" j 1:8 Ã:10 Ã:12 Ã:14 Ã:16 Å\$+ Đ8#' +&]È ¾60 \$'8\$æ@ ĽAf3+]Đ•0ÊCXGÿ6 , ´ * Ê FG¦ ANL-MARE Ä Å(™ kCXGÿ, 6% Ã8% Ã 10% Ã12% Ã14% ÅÈ X 0 Ê"d#¤\$Y Ö ;549 Ã55 Ã ýÄ 0 Ê & L\$ Ä1 Ã2 Ã4 Ã6 Ã8 Ã 60 Ã5 Ã0 Å50 r/min 10 h ÅÄ ý Ä5 • > ÈE÷% L"G¦ È9ç ÇG¦ ó 8 @ ×(™ È 6/ё ×(™] TAG Ä ... 3PB P¼ OPL • k TAG , -() [Gÿ ¼ sn-2 PA • k PA, ´CXGÿ 6 Ä sn-2 PA È OPL, ′ [Gÿ ¼ ×(™]G * -() [Gÿ Å j 7 7 ÈAô ' Ece0+, ')àB' \ddot{A} ý \ddot{A} Gý =F >| 3!Q \ddot{A} § fý \ddot{A} ò ²; \ddot{O}

Ä1 Å63 OA > LA [™] D") 8 @ OPL,′ į ý Ö PPP >726ÚG[™] Å([™] [™] D''1:12 È ý Ä\$Y Ö j 60 È ý Ä &L\$ j 6 h È726ÚGANL-MARE \$+ ĐGÿ j Å([™] kCXGÿ,′ 12% ĎA > LA [™] D" j 1:0.5 Ã:0.75 Ã:1 Ã 1:1.25 Ã1:1.5 Ä

Ä2 Å63 Å(™™D") 8 @OPL, ´ į ý Ö OA > LA ™D" 1:0.75 È726ÚGANL-MARE \$+ ĐGÿ j Å(™ kCXGÿ,12% È ý Ä\$Y Ö j 60 È ý Ä &L\$ j 6 h ÈPPP >726ÚG¨Å(™™D" j 1:8 Ã1:10 Ã1:12 Ã 1:14 Ã1:16 Ä

Ä3 Å63 726ÚGANL-MARE \$+ ĐGÿ) 8 @ OPL,´ į ý Ö Å(™ ™ D"1:12 ÈOA > LA ™ D " 1:0.75 È ý Ä\$Y Ö60 È ý Ä &L\$6 h È726Ú G¦ANL-MARE \$+ ĐGÿ j Å(™ kCXG)6%, Ã8% Ã 10% Ã12% Ã14% Ä

Ä4 Å63 ý Ä\$Y Ö) 8 @ OPL, ´ i ý Ö Å(™ ™ D" 1:12 ĎA > LA ™ D" 1:0.75 Ěý Ä &L\$ j 6 h È 726ÚGANL-MARE \$+ ĐGÿ j Å(™ kCXGÿ12% È ý Ä\$Y Ö j 50 Ã55 Ã60 Ã65 Ã70 Ä

Ä5 Å63 ý Ä &L\$) 8 @ OPL,′ į ý Ö Å(™ ™ D" 1:12 ÈOA > LA ™ D" 1:0.75 È ý Ä\$Y Ö j 60 È726ÚG¦ ANL-MARE \$+ ĐGÿ j Å(™ kCXGÿ,′ 12% È ý Ä &L\$ j 1 Ã2 Ã4 Ã6 Ã8 Ã10 h Ä 1.3.3.2 OPLG¦ óG¨@ 8 @,′ ý ÄM'B P¼ H F

* ¾ ... 3PB P¼5 ÌÈF >| ý ÄM' H F 6 À È

F9) OPL-() [Gÿ ¼ sn-2 PA-() [Gÿ 9 n:‡
; ý, ´ 3 Z 3P ÖANL-MARE 726ÚG¦\$+ ĐGÿAÃ
PPP >726ÚG¨, ´Å(™ ™ D" bà OA > LA ™ D
"ÄC ÅÈF >| 3 3P3"d £, ´ý ÄM' 6 À ÎP¼ È
) OPLG¦# 8 @, ´ 8ªF >| H F Ä ÎP¼G÷+XBox-BehnkenAîAÑ È] ó ÎP¼!Q j 3!Q È 4 Z 3P, ´

= # P Y # F I O L F OA O,@Œ@~ 2L!' Table 1 The factors and levels of Box-Behnken test

		Ù -	
< -	A/%	В	С
-1	10	1:12	1:0.5
0	12	1:14	1:0.75
1	14	1:16	1:1

1.3.4 ¼ 6 !^/TAG Ó 6 ò'-Q Þ1ŷ², [®]e[#]# È 6!" !'' >G¦ óG["]@ ×(™ 10 mL/g, ^{'"} »\$' 8 È ½ Đ •\$h/ë726ÚG["] 1.5 = ™ D f Gÿ, 0.5 mol/L KOH-CH₃CH₂OH \$æ#â Ä30% ÈV/V ÅÈ u 6\$' 0 ÃM‰5ž 6 r È h : r [9 TAG, [!]"!"-(È45 ûEœ:è f\$ærÇ` TAG Ä 1.3.5 !^TAG Ó e

	=	- \$	"C6]/7 »					
_	Table 2 LC elution procedure							
_	" ∙/min	Ó Ä Ÿ/%						
	0	95	5					
	10	60	40					
	60	60	40					
	61	25	75					
	66	25	75					
	67	95	5					
	77	95	5					

72CX4ô @ 6 ÀG÷**Ł**&-ELSDF >| Ä é# ² ; Ö 0^a"D Œ jM. F"D **x**ELSD ð#{ [°]\$Y Ö j 50 ÈE-"D » Ë 3.5 bar È Î,ú j 6 È8¢Ba ! j Dionex Acclaim[®] C30 Ä250 mmx4.6 mm È5 μm Åx ‰7x ¼ 2 IG·F >| ¼ s ß Ö#G7a È#G7a0; ¿ ²>[°] 2 È#qFO1 mL/min È !\$Y 30 Ä"é72 g ñ\$æ@ ¾!" !'' Ä 10 mg/mĚ F gGÿ 20 μL ÄTAG Y+X 7 ö ñF >| Ê W ÈG÷+X M'0 , 0 F# AÑ1Ç OPL • k TAG , ´-() [Gÿ Ä

1.3.6 » 6 ¦ N Ó e

69ç Ç,´ TAG +bGŸ F ÈG÷+03C-MS ð#{ 6 À k726ÚG⁻⁻4ô @ Ä

GC '& ÖG÷+2ØB-WAX "4ö1Ñ !Ä60 m×

0.25 mmx0.25 m Åx ð#{ ~\$Y Ö 250 ÈF g \$Y Ö 250 ÈE-"D j"V"D È#qFO 1.0 mL/min È 6#q" 1:20 ÈF g 1 L Ä w\$Y0; ¿ ÖOÆ x X50 ; 1 1 min È'f > 22.5 /min , FO)• w\$Y8# 175 È 0 > 4 /min , FO)• w\$Y8# 230 È ¦ 1 20 min Ä

MS 6 À '& ÖEI+e/ë\$À7-Gÿ j70 eV È/ë € \$À ¼ PEÃ4ï\$Y Ö 6 [j 230 ¼ 150 Ä › ÿ93 \$ 30~500 P/z È\$æ r &F 6 min Ä726ÚG¨,´Ê W 6 À i ž 7 ö ñ ¼Ba à Ä NIST.08 ÅF >|ÈÊGÿ 6 ÀG÷+X M'0,0 F# Ä

1.3.7 sn-2 »6¦NÓe

X 6/ë Ç`,´ TAG ×(TM] Đ•1 mL 1 mol/L Tris-HCI5C â#â β H I 8.0Å 0.25 mL 0.05%6öG" JĐ Ä PVÅ 0.1 mL 2.2% CaQIÄ PVÅ 20 mg7 7 2 6ÚG¦ Ä\$' 8(TM X40 —&ø w s3 min È'f > Đ• 1 mL 6 mol/L HCI ¼ 2 mL ‰GÊ È/ë ó Ä ‰GÊ+X "d .>G"JĐ ¢(È"^"D:è 8# 200 L Ä"d@ ×(TM X;´r .u7&8¢Ba⁻: 6/ë È ... 0\$æ r j!"!'' / ‰GÊ ‰ G" Ä50:50:1 È/V/VÅ6 sn-2 ...+H"éGŸ,´'V ^1 È +bGŸ F È ¦F >| ²: 1.3.6 pF GC-MS é# 6 À Ä sn-2 PA-() [Gÿ 9; ?AÑ1Ç Ö

Ä2 Å

) h Ó

% <u>C</u> 3×D ⁷/! %k k 2 * • 6 sn-2 PA ½ ™ • 6 ô % "

% d

1.3.8 ôlÓe

Ckk2*• 6Ãh

Dkk• 6Ãh

B P¼Gý € !Q È p 9 žG÷+X £ w l f 7 ö B >~/j Ä ... 3P é 6 ÀG÷+X SPSS 26F >| È 2 W 6 ÀG÷Duncan JGý93 \$ ðP¼# Ä ý ÄM'B P¼ 6 ÀG÷+XEŸ &Design-Expert.V 8.0.6 Ä .(w5 fG÷+X EŸ &Origin 2018 Ä

5 Ò DAÞAð

2.1 固定化酶ANL-MARE的制备和表征

G÷+KT-IR 6 À 7 2 6 Ú GANL-MARE * Ê F } >, ´ A 7 2 È ² . 2 p/j È k f 6 < @ 0 È XANL-MARE * Ê } > È A 7 2 § 9-(I, ´($@ \pm h f È F$ > ~ >G¦ * Ê F > A 7 2, ´ ¼ 4 × 5 ´ Z `.d • Ä ¦] È G¦ * Ê F >, ´ A 7 2 X 3 4 4 8 Ã 2 9 2 7 Ã 2 8 5 5.0 9 Ã 1 7 3 3 ¼ 1 1 5 2 cm¹ # K⁻ 4 M'0 Î Đ ÄL¿-p * Ê F G¦ ANL X A72 : [Gÿ, ´Î Đ È h f 3 448 cm¹ Lt F n/j *, ´j h f j -OH ¼G¦(© 9, ´-NH- ×+O , ´h5Y _ Ø $^{Ø>}$ Ä2 $^{@}$ 927 Ã2 855.09 cm¹ h f j -CH₂ F -CH₃ h5Y _ Ø $^{Ø>}$ È $^{@}$ > ANL > A72 @ Ï-(F Õ Ä h f 1 733 cm¹ _ -C=O- h5Y _ Ø È 1 152 cm¹ j C-N, ´ h5Y _ Ø È > { } Michael 1y $^{Ø>}$, ´.DO!5 Ì-(IÈ :5 ÌAñ Î ¶ ANL 7-FJE÷G 7*K^ ¼"RK^ Œ+X @ Ï > A725 8 Ä

Fig.2 The infrared spectral changes before and after immobilization of ANL-MARE

) * Ê FG¦ ANL-MARE , ´<û, -E-Gÿ >G¦#k W 6 À ²> ~3 p/jÈ * Ê FG¦ ANL-MARE E-Gÿ j 13.97 mg/gÈ<û, -CX hLt)·Q E92.37% È> ~ > * Ê F x)·E³Q Ä726ÚG¦>õE-Gÿ ¼G¦, ´ hLt x)· ã ¾ A72, ´" > ~M'0 ¼+¿"d W ^{Ø>} Ä 0 . Dol], ´ A72) ANL hLt W7-Q ¾ x }ANL X #6Š3 5?), ´ MP-64 A72 : § 9 83.79%<û, -CX hLt)·, ´ ÕFf ^{Ø>} Ä^{@ Ø} ANL-MARE , ´" #k ËEî 79.52 U/mgÈQ ¾ x }.D 0¦ÕFf, ´ ANL X Þ, ZIF-8 €É:f7, ´*ÊFG¦ , ´G¦#k Ë ^{Ø>} Ä 5 , °:È * Ê FG¦ ANL-MARE G¦#k Ë 8Ÿ - È +X ¾ >5 G¦ÜF ýÄÄ

	=	& č	BF¢ "	/ -	. " .	3	&+°;÷+'	WFß	äF¢"g	S
Table	3 Protein	cont	ent an	d enzy	yma	tic	activity	of im	mobiliz	zed
			enzvm	e ANI	-MA	١R	?E			

3		ANL-MARE
ñ B) { h/(mg/g G \$)	13.97 •0.46
ñВ) k Ñ/%		92.37 •0.08
' c O/(U/mg)		79.52 •2.53

2.2 PPP的富集及分析

x }.D0¦ ÕFf È58 ,.œ72] [9 ` ü,´ PPP^{Ø >} Ä₱₽₽_8 @ 2- ,G¨GŸ,´8Ÿ - Å(™ •\$À È !" È9ç Ç WGÿ,´ PPP Œ j ý Ä Å(™ È _G¦# 8 @ OPL,´£K^!•PÔ Ä \B P¼G÷+X\$æ r#) ,.œ72] PPPF >| 6 üLöÈY+X PPPXIGž], '\$æ@ Ö ~ 34 | =O; 14726UGTAG, 'WCXÈX\$ær]À* 5 |Èþ6<Eî`6/ë, '-, 'Ä5Ì². 3È4ÿE÷6 È×(™] PPP-()[Gÿþ6}, '42.84% Q `94.43%Ä)6 ×(™, '726UG'4ô@F 0!•6À Ä>~4ÅÈ×(™] kPA 14 sn-2 PA-()[Gÿ 6[j 92.80%14 90.03%È-(" üLö PPP{}6[Q ¶ 21.42%1427.17%Ä>x} Wang1y^{Ø>}ÃQ[®]Þ1y^{Ø>}G^{®,Ø} +X\$ær# üLö6 PPP, '.D0!5Ì-(IÄ:5Ì >~>È6 ×(™] TAG k?±j PPPÈ!"6 8ª 9 x üLö, .œ72] PPPÈ Œj>5 OPL, ' G!# 8@, '8Ÿ - Å(™•\$ÀÄ

* 1 1 1 +° łKòö - \$ & - 4 % "Þ\$ 2 ...
 Fig.3 Enrichment of PPP and LC-ELSD liquid phase analysis

 <u>1</u>
 a 58 §• ÷
 LC-ELSD D V Í " b < ¶
 Ó ",)!^
 LC-ELSD D V Í " c Ó ",•

 PPP Ã h - \$ d

= 1 1 1 2 ü łKò y :+°6.5ÖF∕ , T O 6.5ÖF∕3ð < Table 4 Fatty acid and sn-2 fatty acid composition of palm stearin after fractionation

	, •		,				
FA -	™FA	sn-2	™FA	sn-2			
C12:0	0.23 •0.05	0.18 •0.59	0.02 •0.01	k			
C14:0	2.12 •0.12	0.96 •0.23	0.78 •0.03	1.47 •0.18			
C15:0	0.09 •0.01	k	k	k			
C16:0	71.38 •0.78	62.86 •0.54	92.80 •0.28	90.03 •0.59			
C18:0	3.92 •0.49	3.32 •0.63	3.94 •0.34	3.80 •0.73			
C18:1	18.28 •0.56	27.07 •0.19	1.92 •0.12	4.27 •0.28			
C18:2	3.98 •0.23	5.62 •0.13	0.53 •0.04	0.43 •0.22			
_!	_!FA! » 6 - s à h " sn-2!sn-2 * » 6 - s à h d						

2.3 酶促酸解法合成OPL的单因素优化

2.3.1 OA OLA iš's æ NOPL õ1

Fig.4 Effect of OA/ LA molar ratio on the synthesis of OPL by enzymatic acidolysis

_!M - ½ "{¶µ Ó;W PØ0.05 • ½ d

... 3PB P¼63 4 ý Ä 3P) OPL • k TAG ,'-() [Gÿ ú sn-2 PA-() [Gÿ,' į ý ÄG!# 8 @ ý Ä5 • ÈG÷+X.á# 7aL" ×(TM]E÷Gÿ,'726ÚG" 6/ë TAG È9ç Ç7aG" > ×(TM],' TAG Ç)• Eî 90.40% È !" \.D0\G÷+X.á# 7aG" 6/ë9ç Ç TAG Ä sn-1,3 }(© W726ÚG! Ü F 8 @OPL & È726ÚG"G * Ë f OA ¼LA,'" » _ į ý ×(TM72CX5 ',' k?± 3P^{0 >} ÈB⁰P¼OÆ x63 Å(TMQA > LA TM D") G¦# G["]@ 8 @OPL,' į ý Ä². 4 p/j ÈOA > LA TM D" j 1:0.75 & ÈOPL ¼ sn-2-PA-() [Gÿ n:‡ Î Đ È OPL þ 34.90% n:‡ Î Đ8# 46.43% ÄP Ø0.05Å sn-2 PA-() [Gÿ E î 68.08% ÄOA > LA TM D" j 1:0.75~1:1.5{L\$ ÈOPL -() [Gÿ x ;L}C» ï È D 4 TM D" ; ×(TM sn-2-PA-() [Gÿ"Ñ 9 n:‡ 2 Ä P Ú0.05 ÅÄ :5 Ì @ Gú j f k72 6ÚG", ´[Gÿ 0 Ê & È OA > LA ")·C^oQ J Î Đ OA ,´•)·È C ,8\$ ×(™] OPO [Gÿ Î Đ È6< OA > LA ")·E³ ~ & È I C+O @ WGÿ, ´ LPL 72CX[®] È[®]f[®] /ý õ å w J ⁻ ×(™] OPL Ç)·L} ~ Ä !"ÈF9 OA > LA ™ D" j 1:0.75E³ jF2 Ì Ä

2.3.2 ^ i š ' s æ NOPL õ ¹

63 Å([™] PPP >726ÚG[°]G * Ë f,´ [™] D")G¦ # G[°]@ 8 @OPL,´ į ý Ä ². 5a p/j ÈPPP >72 6ÚG[°] [™] D" j1:8~1:14 & ÈOPL -() [Gÿ ¼ sn-2 PA -() [Gÿ n:‡ wQ Ä P Ø0.05 ÅÄ f 5 5 Î Đ [™] D " 8# 1:16 & È 8 @OPL -() [Gÿ"Ñ 9 n:‡ F È D sn-2 PA-() [GÿL} ~ È 7- _G * +O }0+ p 8\$ Ä X F6 ý Ä] ÈQ Å([™] [™] D" Î ĐG¦ > Å ([™], ´.à ÎNÁ)· ^{Ø >} È[°]I[°]D Å([™]]\$h/ë726ÚG[°], ´Gÿ Q G * Ä726ÚG[°] Å X sn-1,3 },´ •)· Ä'f6<E÷ J, ´726ÚG[°] 7- J Î Đ ý Ä f3+, ´G[°] Ö ¼2È W È þ 6< Á f726ÚG¦, ´#k W ÈL} ~ PCXFO)· ÈF 05 Ì > Michael 1y^{Ø >}.D[°]I⁵ Ì-(2« I Ä < & Å([™]] \$ J,´ 726ÚG[°] C Î Đ >5 726ÚG[°]7aL[°], ´Lî Ö Ä5, : pF È F9 [™] D" 1:14E³ j 8F2 Ä

2.3.3 » ANL-MARE $h s \approx NOPL \tilde{o}^1$

63 726ÚG¦\$+ ĐGÿ)G¦# G[•]@ 8 @PL, i ý È ². 5b/j ÈANL-MARE +XG%%~12% ÈL¿-p G¦Gÿ,´Î Đ ÈOPL-() [Gÿ n:‡Î Đ ÄP Ø0.05Å 'f6<È55Î Đ` 14% ĐG¦Gÿ >12%-("È8 @ OPL-() [Gÿ"Ñ 9 n:‡ 2 Ä P Ú0.05Å sn-2 PA -() [GÿL¿G¦Gÿ,´Î Đ x)à * x Î Đ >C » ¾ £>'È +J8# X ĐG¦Gÿ j 14% & § 9L} ~,´C » ï Ä :5 Ì @ Gú j ÈX Å(TMGÿ 0 Ê,´õ å ; ÈĐ • \$ J,´726ÚG¦ È Î Đ ¶ Å(TM >G¦#k W] ó,´Õ@ È OPL+O @Gÿ n:‡ Q Ä f ý ÄC » ¾ £>' & È55 Î Đ726ÚG¦) OPL x),´Q Œ+XE³? È6< sn-2 PA-() [Gÿ,´;L} 7-+a ¾E÷Q,´ĐG¦Gÿ È ý ÄE÷0;] *)àG * }0+ p 8\$^{Ø >}Ä[®]![#] È5, 863<• ÈF9 726ÚG¦\$+ ĐGÿ j 12% Ä

2.3.4 \pm ë 1 g s æ NOPL õ¹

63 ý Ä\$Y Ö)G¦# G[°]@ 8 @PL, ´; ý Ä
+a.5c.È X 50~60 {L\$ È OPL-() [Gÿ ú sn-2 PA-() [Gÿ"Ñ 9 n:‡ 2 Ä P Ú0.05Å
L¿-p\$Y ÖÎĐ8#65 Èsn-2 PA -() [Gÿ n:‡L} ~
ÄP Ø0.05ÅX 70 & ÈOPL -() [Gÿ ½ sn-2
PA -() [Gÿ w n:‡L} ~ ÄP Ø0.05 ÅÄ } O.D0¦
)à È * Ê FG¦ ANL-MARE, ´ 0F2\$Y Ö jL\$ X
40~60 ^Ø> È[®]7-@ Gú ¶ \.D0¦ 50~60)8 @
OPL-() [Gÿ 2 = W,´Ï Ä+a ¾G÷+X ~ ¾ 50
\$Y Ö # u 6\$æ@ ý Ä Å(™ PPP È < &Q \$Y J ×+O \$
J, 7-6G È !"ÈF9 50 Œ j>5 ÎP¼' & Ä

2.3.5 ± ë " · s æ NOPL õ 1

63 ý Ä &L\$)G#G G & OPL, ´iýÈ². 5d Ä ý Ä &L\$ 1~4 h µ ÈOPL -() [Gÿ ¼ sn-2 PA-()) [Gÿ n:‡ wQ Ä P Ø 0.05Å 4~6 hEî `£>'È OPL -() [Gÿ ¼ sn-2 PA-() [Gÿ 2 = n:‡Ä P Ú 0.05Å ý Ä 8 h & sn-2 PA-() [Gÿ 9 pL} ~Ä P Ø 0.05Å F 7-+a ¾ ý Ä &L\$ &K⁻È6 € +OG * }0+ p8\$È F > Wang1y^{Ø >}, ´5^OÎ 08\$ Ä !" È5, 863<•F9 ý Ä &L\$ j 4 h Ä

2.4 酶促酸解法合成OPL响应面结果及分析

* ¾ ... 3PB P¼5 Ì È63 ANL-MARE G¦\$+ ĐGÿ ÄAÂ PPP >726ÚG¨, ´ Å(™ ™ D" ÄÂ OA > LA ™ D" ÄC ÅS Z 3P È OPL-()[Gÿ Ä YÅ sn-2 PA-()[Gÿ Ä Y₂ Å jý Ä I È *0û 3 3P 3"d £B P¼AîAÑ È § fAîAÑ ¼5 Ì?ñ>5 È)ÎP¼ ž F>|Js, 8 È Ç`¼!Q JN©, é0; Ö

Y₁=47.72+2.2**4**+0.88%1.04C-0.16\$%0.02\$& -0.56%**-**8.89A²-3.16%3.38C²

Y₂=72.46+1.5**8**+1.24%0.12C-0.94 \$ %0.53AC-1.26% & .38A²-2.98 %4.12C²

=	01-F¢"	4 < # P Y	# F I O L F OA O,@Œ@	°″ ö3
Table 5	Boy-Bohnkor	experiment	al design and results	
			ai ucsiyii anu icsulis	

Ëri		<u> </u>			V	
	Α	В	С	т ₁	12	
1	0	0	0	48.18	73.01	
2	1	0	-1	42.43	68.01	
3	0	1	1	43.15	66.04	
4	1	-1	0	44.01	68.93	
5	1	1	0	44.37	68.77	
6	0	0	0	46.81	72.17	
7	0	0	0	47.49	72.02	
8	-1	1	0	39.65	67.16	
9	0	-1	1	41.44	65.34	
10	1	0	1	44.41	66.76	
11	-1	0	1	40.44	64.98	
12	0	1	-1	42.04	67.91	
13	-1	0	-1	38.54	64.11	
14	0	0	0	48.49	72.46	
15	0	-1	-1	38.09	62.17	
16	0	0	0	47.61	72.62	
17	-1	-1	0	38.65	63.56	

ižé 6À5Ì.Ä> ~ 6ÅÈ,Q»,′F IE3QÄF=32.69Å PI±∼Ä PØ0.0001ÅÈ!",

Q»x±n:‡"d£ÄBQ»,´ãÊ3+Ä R²=0.976 8 Å 1/4 Q!" ã Ê3+ Ä R²_{adi}=0.946 9 ÅE³ j*6 # ÈB\$ >B Q », ´ÎP¼B E³ ~ D 80; Ö8Ÿ - Ä!" FÈa NCF IÄ F=2.33 Å ¼P IÄ P=0.215 6 Å>~ > a NC = n:‡ È IB Q », '0c Ê WE³ - È +X ¾ OPL,' 8 @ ' &F >|N′#{ Ä i ž>~] 4 3P,′ FI¼ PI . È 0!QN© A ÃC)5 Ì ; ý ± n:‡ Ä PØ0.01Ã B)5 Ì į ý n:‡Ä PØ0.05 ÅÈ ¼!QNA® ÃB² ¼ C^2 , C^2 , $CE + X w x \pm n$: $\pm P\ddot{A} Ø 0.01 Å \dot{E} \hat{O} \hat{A} NAGB \tilde{A}$ AC ÃBC)5 Ì"Ñ 9 n:‡ ; ý Ä P Ú0.05 ÅÄ 4 3P) 8 @ OPL-() [Gÿ,´ ; ýNª ¿ j Ö A ÚC ÚB È £ ĐG¦Gÿ ÚOA > LA ™ D" ÚÅ(™ ™ D" Ä

= 01-,\$ % WFB ø Å 3ÿ å 2 ... Table 6 Variance analysis of response surface results

0	ÿW	<°ä' (g ^ 0		F	P i\	Νÿ	
	fø	196.16	9	21.80	32.69	<0.000 1	**	
	А	40.23	1	40.23	60.34	0.000 1	**	
	в	6.16	1	6.16	9.24	0.018 9	*	
	С	8.69	1	8.69	13.04	0.008 6	**	
	AB	0.10	1	0.10	0.15	0.706 8		
3ÿ	'AC	0.001 6	1	0.001 6	0.002 4	0.962 3		
	вс	1.25	1	1.25	1.88	0.212 5		
	A ²	35.06	1	35.06	52.58	0.000 2	*	
	B^2	42.06	1	42.06	63.08	<0.000 1	**	
	C^2	47.97	1	47.97	71.96	<0.000 1	**	
	÷	4.67	7	0.67				
	ž¥»	2.97	3	0.99	2.33	0.215 6â	i W	
,	Jb	1.70	4	0.42				
-	™ - Ó	200.83	16					
	R^2	0.976 8						
	R^2_{adj}	0.946 9						
	a	* r ¶ 11	Ó : W	Ραι	1 85 *	*r¶u Ć		

¡W PØ0.01 d•¶½ d

n:‡ÄPÚ0.05 Å×ÔÂN@C)5 Ì;ý±n:‡ ÄPØ0.01Å AB)5 Ì;ýn:‡Ä PØ0.05Å AC)5 Ì"Ñ9n:‡;ýÄ PÚ0.05Åļ!QN@A²ÃB²¼ C²,´Œ+Xwx±n:‡Ä PØ0.01ÅÄ4 3P)×(™] sn-2 PA-()[Gÿ,´;ýNª;jÖ AÚBÚCÈ£ ĐG¦GÿÚÅ(™™D"ÚDA > LA ™D"Ä

T O 1 ",\$ % WFß Ø Å 3ÿ å 2 …
 Table 7 Variance analysis of response surface results for therelative content of sn-2 PA

0	.0 # (~ ^ 0		г	D	
ÿW	<°a	gv		F	Ρ	i vv y
fø	190.17	9	21.13	64.46	<0.000)1 **
А	20.03	1	20.03	61.11	0.000	1 **
В	12.20	1	12.20	37.22	0.000	5 **
С	0.11	1	0.11	0.32	0.587	7
AB	3.53	1	3.53	10.78	0.013	4 *
AC	1.12	1	1.12	3.43	0.106	6
BC	6.35	1	6.35	19.37	0.003	2 **
A ²	23.76	1	23.76	72.48	<0.000)1 **
B^2	37.28	1	37.28	113.71	<0.000)1 **
C^2	71.32	1	71.32	217.54	<0.000)1 **
÷	2.29	7	0.33			
ž¥»	1.69	3	0.56	3.72	0.118	5 â _i W
Jb	0.61	4	0.15			
™ - Ó	192.47	16				
R^2	0.988 1					
R^2_{adj}	0.972 7					

ý Ä "M' \$ - ` 6 4 3P {L\$, ´ Ô Â Œ+X ?ö F È ². 6 p/j È Ô Â Œ+XAB ÃAC ÃBC ,´ "4ï _ " È1yQ "4ï x] 6 ' Ä Ô Â Œ+X) sn-2 PA -() [Gÿ,´ ; ý². 7 p/j È BC Ô Â Œ+X "M' 0L' È D1yQ 4ï öLö È> ~ >BC Ô Â Œ+X)sn-2 PA-() [Gÿ,´ ; ý 0 j n:‡ È+a . 6 À Ô Â Œ+X W ? 6 [j Ö BC ÚAB ÚAC Ä

content of OPL

Fig.7 Response surface of the interaction of enzyme load, substrate ratio and fatty acids molar ratio on the relative content of sn-2 PA

 $\begin{array}{l} FJE \div, Q & N'\# \{ \grave{E} Ç \& @ OPL 0F2 8^a \\ j & OPP > 726 UG", ´™ D" 1:14.27 \grave{E}726 UG | \$ + ĐGÿ \\ 12.70\% \grave{E}OA > LA ™ D" j 1:0.76 \grave{E} X!" & `& ;, ´ \\ 8 @ OPL - () [Gÿ, ´N'# { I j 48.24\% \grave{E}sn - 2 PA()] [Gÿ j 72.76\% \"{A} X!" & `& ;F >] 3! QP1⁄4 AñB P1⁄4 Ç \\ & ` 8 @ OPL £ w [Gÿ j 47.93\% \grave{E}sn - 2 PA()] [Gÿ j 71.69\% \grave{E} > Q & N'# { I-(F \grave{E}>~ > ý \ddddot{A}M' 8^a Q \\ & ` 8 OPL ² + X ³⁄4 OPL G| # 8 @, ´ 7, \"{A} \\ \end{array}$

2.5 固定化酶ANL-MARE与商业酶催化合成 OPL的比较

- } ⁻# +X ¾72CX O ,´ v J F,´ sn-1,3(© 2 W * Ê F726ÚGNS40086 ¼ Lipozyme 435 X-(I

ýÄ'&;ȧ9E³-,´ÜF#kWÄ !"ÈXHF , ´ ý Ä ' & ; ÈB P¼ 6 ANL-MARE Ü F 8 @ OPL , ' Ü F#k W > v JG¦ NS40086 ¼ Lipozyme 435F >|" E³ È5 Ì². 8 p/j Ä3 /ý726ÚG¦ Ü F ý Ä] OPL-() [Gÿ ¼ sn-2 PA-() [GÿL¿-p ý Ä &L\$,´Î $D_6 < \hat{I} D \dot{E} + X = 4 h > C \approx \frac{3}{40c} \hat{E} \dot{A} + \hat{I} \dot{E} ANL-MARE$ ¼ NS40086 8 @OPL-() [Gÿ ú sn-2 PA-() [Gÿ"Ñ 9 n:‡ 2 Ä P Ú0.05Å sn-2 PA-() [Gÿ w n:‡Q ¾ Lipozyme 435ý Ä p Ç Ä P Ø0.05ÅD Lipozyme 435X 4 h & OPL-() [Gÿ+J8# 9 p ;L} È B\$ > ý ÄE÷0;] 7- ^ XG * }0+ ÄF Ë5 ÌB\$ > ANL-MARE , Ü F#k W ¼sn-1,3(© 2 W > nQ ¾ Lipozyme 435 È ¦ Eî ` > NS40086 Ü F 8 @ OPL 7- Ë-(fȦ8@ OPL,'-()[GÿQ ¾ x}Q Þ 1y⁰, ... D0¦G÷+XNS400860!•# ÜF8 @ 42.07% $OPL, \tilde{O}Ff \ddot{A}5, : pF \dot{E} * \hat{E} FG \mid ANL-MARE$ 9E³ H, ´ Ü F 8 @ OPL, ´#k W Ä

& BF¢ " / - ... " 3 & : r FF¢ ØB 4 < 0 1 - +°! Dfl
 Fig.8 Comparison of immobilized enzyme ANL-MARE with commercial enzymes in catalytic synthesis of OPL

5 Að

\.f7 $\frac{1}{4}$ > $\frac{1}{2} \pm \P * \hat{E} F726 UG$ | ANL-MARE È X \$æ r f3 +] È Ü F Å (PPP ÃOA $\frac{1}{4}$ LA 8 @OPL ÈFJE + ... 3P $\frac{1}{4}$ ý ÄM' H F9ç Ç 0 H 8° Ö PPP >726ÚG[¬], ´™ D[¬]1:14.27 ÈANL-MARE 726Ú G¦\$+ ĐGỷ2.70% ÈOA > LA ™ D[¬] j 1:0.76 È50 ; ý Ä 4 h Ä X!" '& ;, ´8 @ OPL-() [Gÿ j 47.93% Èsn-2 PA() [Gÿ j 71.69% Ä > v J * Ê FG¦-(" È ANL-MARE Œ j Ü F 8 @ OPL, ´+O([™] Ü F r & È § 9E³ H, ´Ü F#k W ¼ sn-1,3 }(© 2 W Ä \.D0¦ Ë ¶G!# G[¬]@ 8 @ OPL, ´à 8ª È jê £ 72 / ñ, ´ x J F f 7 • Ê ¶*6Aê *.p Ä

参考文献

- > @GANESHALINGAM M, ENSTAD S, SEN S, et al. Role of lipidomics in assessing the functional lipid composition in breast milk [J]. Frontiers in Nutrition, 2022, 9: 899401.
- > @ IZO"ã,N O, ~9ú8ã,1y.!ý £1,3- ¼ =O; ¼726ÚG"-2-,G"+H"é 9GŸ ÄUPU Å, 4ô @ >:U « Ï7-[J].] -"é 72,2022,47(9):114-121.
- > @W2U Y, ZHANG N, DENG Z, et al. Effects of the major structured triacylglycerols in human milk on lipid metabolism of hepatocyte cellsL Q Y[J].WdurRal of Agricultural and Food Chemistry, 2021, 69(32): 9147-9156.
- @HØJANG Y, WANG N, ZHAO H., Q Yactiv Res of the structured lipids 1,3-dioleic acid-2-palmitic acid triglyceride (OPO) in high-fat diet mice [J]. Food Bioscience, 2022, 47: 101667.
- @ZBIANG Z, WANG Y, LI Y, et al. Effects of sn-2-palmitateenriched formula feeding on infants J U R Z W K V W R R O characteristics, stool fatty acid soap contents and bone PLQHUDO FRQWHQW \$ V\VWHPDWLF UHYLH UDQGRPL]HG FRQWUROOHG WULDOV >- @ Science and Nutrition, 2022, 27: 1-11.
- @YØAN T, QI C, DAI X, et al. Triacylglycerol composition of breast milk during different lactation stages [J]. Journal of Agricultural and Food Chemistry, 2019, 67(8): 2272-2278.
- > @ 10 fM, H9L, H ½,1y.!ý £]1-"éG *-2- ,G *-3- Ê "éG *+H"é 9GŸ,´.D0¦F ... [J].] -"é72,2022,47(5): 16-22.
- > @ZØIANG X, WEI W, TAO G, et al. Identification and quantification of triacylglycerols using ultraperformance supercritical fluid chromatography and quadrupole time-RI ÀLJKW PDVV VSHFWURPHWU\ & RPSDUL infant formula, other mammalian milk, and plant oil [J]. Journal of Agricultural and Food Chemistry, 2021, 69(32): 8991-9003.
- > @LØU Q, ZHAO J, LIU Y, et al. Advances in analysis, metabolism and mimicking of human milk lipids [J]. Food Chemistry, 2022, 393: 133332.
- SMEHAR, JEYARANIT. Lipase-catalysed acidolysis of PDQJR NHUQHO IDW ZLWK FDSULF DFLG W

long-chain triacylglycerols [J]. International Journal of Food Science & Technology, 2018, 53(6): 1527-1534.

- @ AO L, CHENG X, YU X, et al. Lipase-mediated production of 1-oleoyl-2-palmitoyl-3-linoleoylglycerol by D WZR VWHS PHWKRG >- @) RRG % LR \sh-2 bla@mitiblacid and sn-1, 3 oleic acid (OPO) for infant
- @/ANG X, HUANG Z, HUA L, et al. Preparation of human > milk fat substitutes similar to human milk fat by enzymatic acidolysis and physical blending [J]. LWT-Food Science and Technology, 2021, 140: 110818.
- @ -Ø0 ,% £ Þ,Tô -K . G¦ Ü F '7&2-"é * ü [ÊTëG" , ´OPL »5 ´GŸ[J].O ñ ^{1 ~} , :,2022, (17):136-138.
- @/ØIW, SUNC, WANGX, et al. Lipase-catalyzed > V\QWKHVLV RI VQ SDOPLWDWH 2020, 6(4): 406-414.
- @HØI,9 *K&,Tô @,1y. * Ê F726ÚG¦ Ü FG;"é3 "é72 8 @+H"é ¼GŸ, ´.D0¦[J].)à O ñ0 °,2017,33(11):110-118.
- **@EDNG K, HUANG Z, PENG B, et al. Immobilization of** \$ V S H U J L Olipase/on@laJndvlel macroporous acrylic of high-acid soy sauce residue oil [J]. Bioresource Technology, 2020, 298; 122553,
- @IØ N, FU M, WANG Y, et al. Immobilization of Lecitaseultra onto a novel polystyrene DA-201 resin: characterization and biochemical properties [J]. Applied Biochemistry and Biotechnology, 2012, 168(5): 1108-1120.
- @000J X, HUANG J, JIN Q, et al. Preparation of human > PLON IDW VXEVWLWXWHV IURP SDOPmetholder build birbulltanzeduuld/phtep2arbationFolk builder BarbationFolk builder BarbationFolk builder BarbationFolk builder BarbationFolk builder Barbation Folk builder Barbatii Barbation Folk builder Barbation Folk bui and docosahexaenoic acid: Combination of enzymatic and physical methods [J]. Journal of Agricultural and Food Chemistry, 2012, 60(37): 9415-9423.
- **@ Ф**, ‰ O,Fé , 1y.G¦# 8 @1-"éG"-2- ,G"-3-Ê"é G"+H"é 9GŸ5 72, .D0 [J].] -"é72, 2020, 45(8):66-70.
- @/ANG X, HE L, HUANG J, et al. Immobilization of > OLSDVHV RQWR WKH KDORJHQ Enzymatic activity and glycerolysis performance study [J]. > International Journal of Biological Macromolecules, 2021, 169: 239-250.
- @UØL, ZHANG Y, ZIVKOVIC V, et al. Deacidification > RIKLJK DFLG ULFH EUDQ RLO E\ WKHQW(IDMQêGEH) 192,171 RF[D], WKIQQ1•X; RWX-,)20200 RZ

enzymatic reactors [J]. Food Chemistry, 2022, 393: 133440.

- @HODE M K, LI K, WANG J, et al. Immobilization of > 5KL]RPXFRUOPSDKHLRQ PDJQHWLF PXOWLZD QDQRWXEHV WRZDUGV WKH V\QWKHVLV RI
- formula use [J]. Food Chemistry, 2022, 390: 133171.
- @P&, -8ã, ~"••, 1y. J "€É*ÊF726ÚG¦,´.D0¦ > F ...[J]. 6 € Ü F,2020,34(4):378-396.
- > QUARALIYAH A, PERDANI M S, PUTRI D N, et al. Effect of additional amino group to improve the performance of immobilized lipase from \$ V S H U J L Oby & defor patient H U crosslinking method [J]. Frontiers in Energy Research,
- \$ U2012Y, 19:H6:26945.- @ (QJLQHHULQJ
- @UØY, ZHOU H, DAI L, et al. Lipase immobilization on > macroporous ZIF-8 for enhanced enzymatic biodiesel production [J]. Acs Omega, 2021, 6(3): 2143-2148.
- @eố∕•j.ê£72 / ñ, Aô \Q » *0û ú \G\# f 7[D]. KQ:"• ± W –,2013.
- ®g001/Á,~Lc,':ù:ù ,1y.à»*ÊF \$VSHUJLO122XV RU∖]DH >
- UHVLQ 6WDEOH DQG UHF\FODEOH ELREFUD WUDFOG @0/11,3V 1/4" & CO-2G HOD-HFILL409G [#]DOW/1L-RQ G¥ J,2016, 42(5):25-30.
 - @/ANG X, JIANG C, XU W, et al. Enzymatic synthesis of structured triacylglycerols rich in 1,3-dioleoyl-2-palmitoylglycerol and 1-oleoyl-2-palmitoyl-3-linoleoylglycerol in a solvent-free system [J]. LWT-Food Science and Technology, 2020, 118: 108798.
 - 2 Ø, ZHANG Y, ZHOU Y, et al. A novel and controllable
 - VXEVWLWXWHV 23/ 232 DQG /3/ ethanolysis-esterification strategy [J]. Food Research International, 2023, 163: 112168.
 - ●AX L, XU Z, HUANG J, et al. Enzymatically catalyzed > V\QWKHVLV RI ORZ FDORULH VWUXFWXUH system: Optimization by response surface methodology [J]. Journal of Agricultural and Food Chemistry, 2011, 59(23): KDOR 0020315-0020422.V PRGL; HG 6%\$
 - @EDL, ZENG C,WEI L, et al. Fabrication of immobilized lipases for efficient preparation of 1,3-dioleoyl-2palmitoylglycerol [J]. Food Chemistry, 2023, 408: 135236.
 - @ Ø .1-"éG¨-2- 、G¨-3-Ê"éG¨+H"é 9GŸ, ´G¦# 8 @ ú

WZR