烈性噬菌体 vB_VpP_AC2 的分离鉴定 及生物学特性分析

黄桥栏^{1,2},刘泽锟²,何嘉欣²,苏润斌²,谢转北²,黄士轩²,杨美艳^{1*}

(1. 华南农业大学食品学院,广东广州 510642)(2. 华南农业大学农学院,广东广州 510642)

摘要:该研究从水产市场污水中分离纯化副溶血性弧菌噬菌体,并对其中一株噬菌体 vB_VpP_AC2 (AC2)进行分离鉴定、基因组及部分生物学特性分析,探究该噬菌体作为副溶血性弧菌生防制剂的潜力。噬菌体 AC2 的噬菌斑透明且边缘清晰,透明部分的 直径约为 1.12 mm,无可见晕圈。噬菌体 AC2 的全基因组序列长 44 270 bp,鸟嘌呤-胞嘧啶 (GC)含量为 49.30%,共预测到 55 个假 定的开放阅读框,其中 37 个与编码已知功能蛋白质的基因相似(占 67.27%),包括一个类似 holin 功能的蛋白(AC2_gp43,UTQ72417.1), 该功能蛋白 首次在 Maculvirus 属中被表征。经蛋白 网络与末端酶系统发育树分析鉴定,噬菌体 AC2 属于自转录病毒科 (Autograohiviridae), Maculvirus 属,与噬菌体 vB_VpaP_MGD1 的 ANIb 值最高,为 95.62%。在生物学特性方面,噬菌体 AC2 能够裂 解 30.77%的受测菌株,其最佳感染复数为 0.001~0.1,一步生长曲线显示 AC2 的潜伏期为 20 min,裂解期为 35 min,裂解量为 143 pfu/cell。 总之,噬菌体 AC2 的分离鉴定不仅可为相关功能蛋白的研究提供参考,还可为水产食品安全提供较高应用价值的噬菌体资源。

关键词: 副溶血性弧菌; 噬菌体; 基因组; 分离鉴定; 生物学特性

文章编号: 1673-9078(2023)07-42-52

DOI: 10.13982/j.mfst.1673-9078.2023.7.1036

Isolation and Identification of Lytic Phage vB_VpP_AC2 and Its

Biological Characteristics

HUANG Qiaolan^{1,2}, LIU Zekun², HE Jiaxin², SU Runbin², XIE Zhuanbei², HUANG Shixuan², YANG Meiyan^{1*}

(1.College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Food Quality and Safety, Guangzhou 510642, China)

(2.College of Agriculture, South China Agricultural University, Guangzhou 510642, China)

Abstract: *Vibrio parahaemolyticus* phages were isolated and purified from fish market effluent. One particular phage, phage vB_VpP_AC2 (AC2), was isolated, genetically sequenced, and subjected to partial biological analysis to investigate its potential as a biocontrol agent against *V. parahaemolyticus*. The viral plaques of phage AC2 were transparent with clear boundaries; the diameter of the transparent parts was approximately 1.12 mm, with no visible halos. The genome sequence of phage AC2 was 44 270 bp long, with a guanine-cytosine content of 49.30%. In all, 55 putative open reading frames were predicted, and 37 (67.27%) of these were similar to genes encoding proteins of known function, including a holin-like protein (AC2_gp43, UTQ72417.1) that was first characterized in the genus *Maculvirus*. The results of protein-protein interaction network and terminase phylogenetic analyses showed that phage AC2 belongs to the family *Autograohiviridae* and genus *Maculvirus*. The *Vibrio* phage vB_VpaP_MGD1 shared the highest Average Nucleotide Identity based on BLAST (ANIb) value with AC2, at 95.62%. Biological analysis revealed that phage AC2 lysed 30.77% of the tested strains, with optimal multiplicities of infection of

引文格式:

黄桥栏,刘泽锟,何嘉欣,等.烈性噬菌体 vB_VpP_AC2 的分离鉴定及生物学特性分析[J].现代食品科技,2023,39(7):42-52.

HUANG Qiaolan, LIU Zekun, HE Jiaxin, et al. Isolation and identification of lytic phage vB_VpP_AC2 and its biological characteristics [J]. Modern Food Science and Technology, 2023, 39(7): 42-52.

收稿日期: 2022-08-18

作者简介:黄桥栏(2001-),女,本科生,研究方向:噬菌体的分离纯化,E-mail: 3133797709@qq.com;共同第一作者:刘泽锟(1998-),男,硕士研究生, 研究方向:噬菌体防控,E-mail:lzk_98@foxmail.com

通讯作者:杨美艳(1984-)、女、博士、讲师、研究方向:噬菌体防控、E-mail: ymy@scau.edu.cn

基金项目:国家自然科学基金项目(32202194);广东省基础与应用基础研究重大项目(2020B0301030005)

现代食品科技

0.001~0.1. Its one-step growth curve showed that its latent and lytic phases were 20 and 35 min long, respectively, with a burst size of 143 pfu/cell. In summary, the isolation and identification of phage AC2 provided useful information on its functional proteins, indicating that it is a valuable phage for aquatic food safety.

Key words: Vibrio parahaemolyticus; phage; genome; isolation and identification; biological characteristics

副溶血性弧菌是一种革兰氏阴性细菌,广泛存在 于世界各地的河流与海洋环境中,可导致鱼、虾和贝 类等弧菌病^[1],其中,由其引发的南美白对虾急性肝 胰腺坏死病的死亡率可高达 80%~100%^[2]。临床上, 副溶血性弧菌还可引起人体胃肠道疾病,主要表现为 腹泻、腹部绞痛、呕吐、发烧和头痛,严重时可致人 死亡。

上世纪五十年代后, 抗生素被广泛用于细菌病害 的防治,但细菌抗生素耐药性的出现及传播给细菌性 病害防治带来新的难点。水产养殖领域中抗生素的使 用十分广泛,因此微生物耐药性也相对严重,美国、 中国、意大利和其他国家均报道了副溶血性弧菌的抗 生素耐药性,包括目前用于水产养殖甚至临床环境中 的抗生素^[3]。噬菌体可以特异性识别并裂解细菌细胞, 不受细菌耐药性限制,且只能在活的细菌中增殖,无 色无味,分离和生产成本较低,成为替抗制剂的候选 热点^[4]。而只具有裂解周期的噬菌体被称为烈性噬菌 体,这些噬菌体在复制后可以裂解和破坏细菌细胞, 由于具有裂解活性,烈性噬菌体已成为预防和控制多 重耐药细菌的环保替抗制剂。报道表明,烈性噬菌体 对副溶血性弧菌、沙门氏菌和单增李斯特菌等均具有 良好的防控效果^[5-7],说明噬菌体具有良好的替抗前 景。然而,当前可培养的烈性噬菌体资源十分有限, 尤其是弧菌噬菌体,因此急需挖掘遗传背景清晰且生 物安全的高效烈性噬菌体,并对其相关特性进行安全 性评价,为实际应用提供充足的菌种资源。

本研究使用课题组前期从水产品中分离的副溶血 性弧菌菌株为宿主,从珠江水和黄沙水产交易市场地 下水中分离噬菌体,并对分离得到的其中一株代表菌 株的形态结构、生物学特性和遗传信息等进行了相关 研究。本研究为利用噬菌体维护河口生态健康、保障 水产健康养殖的发展以及副溶血性弧菌感染的临床治 疗等提供了新思路。

1 材料与方法

1.1 试验材料

1.1.1 菌株及样品来源

本研究所使用的 39 株副溶血性弧菌均由广东省 科学院微生物研究所提供。水样采集于广州市黄沙大 道西猪栏路 27 号, 东经 113 °5′, 北纬 23 °07′, 分别 为广州市荔湾区黄沙水产交易市场鲜虾批发店附近地 下污水,以及西侧的珠江岸边的江水。

1.1.2 主要试剂

胰酪大豆胨(Tryptic Soy Broth, TSB)培养基、 胰酪大豆胨琼脂(Soybean Casein Digest Agar, TSA) 培养基、技术琼脂、牛肉膏提取物, 广东环凯微生物 科技有限公司; 氯化钠、吐温 80、氯化钙、三氯甲烷、 异丙醇、异戊醇、无水乙醇, 上海沪试化工有限公司; PEG8000、SM Buffer、Tris 饱和酚溶液、Pac *I*、Age *I*、Sph *I*,生工生物工程(上海)股份有限公司; DNase *I*、RNase A、蛋白酶 K, 广州怡和生物科技有限公 司; 氯化铯, 国药集团化学试剂有限公司。

1.2 方法

1.2.1 菌种活化

取-80 ℃保存的副溶血性弧菌菌种,接 TSB 培养 基中,置恒温培养振荡箱按 37 ℃,180 r/min 过夜培养。 1.2.2 噬菌体分离与纯化

将 5 L 污水样品在 5 000 r/min 下离心 10 min, 上 清液用 0.45 µm 混合纤维素酯滤膜抽滤, 在滤液中添 加 MgSO4 至终浓度为 50 mmol/L, 静置 10 min 后 0.22 μmol/L 滤膜再次抽滤。将滤膜剪碎放入含有 3% (m/m) 牛肉膏、3% (m/m) 吐温 80、50 mmol/L NaCl 的洗脱液中,超声波清洗 10 min 后经 0.45 µmol/L 滤 头过滤除菌,获得噬菌体样品浓缩液。吸取 200 µL 浓 缩液与 100 μL 副溶血性弧菌菌液混合加入 5 mL TSB (2 mmol/L CaCl₂)肉汤中, 37 ℃, 180 r/min 过夜培 养,培养物经0.45 um 滤头过滤后获得噬菌体富集液。 使用双层板法分离纯化噬菌体,即将100 µL 副溶血性 弧菌菌液和噬菌体富集液加入 TSB[含 0.4% (m/m) 技 术琼脂, 2 mmol/L CaCl₂]中混匀, 倒入 TSA 平板上, 待凝固后置于 37 ℃恒温培养箱培养 3~12 h, 挑选单 个噬菌斑纯化 7~10 轮,直至得到大小和形态均一的 噬菌斑。纯化后的噬菌体置于4℃保存备用,并加入 终浓度为 *φ*=30%的甘油于-80 ℃保藏。

1.2.3 宿主谱测定

宿主谱的鉴定通常是通过点样法来判断。通过双 层平板法,把100 μL 对数期菌液加入到含有 0.4%琼 脂的 5 mL TSB 中,混匀倒入 TSA 平板上,待半固体 琼脂凝固后, 吸取 2~3 μL 噬菌体培养液滴至平板中 央,培养一段时间后,观察是否有噬菌斑的出现。 1.2.4 形态观察

采用 CsCl 密度梯度离心法纯化噬菌体浓缩液。分 别制备密度为 1.30、1.50、1.70 g/mL 的 CsCl 溶液, 置于 15 mL Beckman 超速离心管中,于 200 600 r/min, 4 ℃离心 3 h (SW 41 Ti Rotor)。收集位于 1.50 g/mL 密度带附近的噬菌体颗粒。取上述噬菌体颗粒 15 µL, 经磷钨酸(φ=2%)染色法染色后使用透射电镜(TEM, Hitachi H-7650)观察噬菌体形态。

最佳感染复数 (Multiplicity of Infection, 1.2.5 MOI) 测定

调整菌液浓度至 1×10⁸ CFU/mL,分别以噬菌体 与宿主细菌按 100、10、1、0.1、0.01、0.001 和 0.000 1 的比例加入至含 100 µL 0.1 mol/L CaCl2 的 5 mL TSB 肉汤中,静置 5 min 后 37 ℃, 180 r/min 过 夜培养, 共培养液经 0.45 μmol/L 滤头过滤至 1.5 mL 离心管中,取100μL噬菌体液,用双层平板法测效价, 测得效价最高的处理组对应的 MOI 即为最佳 MOI, 每个处理重复3次。

1.2.6 一步生长曲线测定

使用 SM Buffer 配置成1 mL 浓度为1×10⁸ CFU/mL 的宿主菌液,以MOI=0.1加入噬菌体和副溶血性弧菌 液体于1mL SM Buffer (含2mmol/L CaCl₂)中, 37 ℃ 静置 15 min 后 12 000 r/min 离心 2 min, 取上清液铺板 计算未吸附噬菌体数量,同时用1mLTSB 重悬沉淀, 取100 µL 重悬液加入9.9 mL TSB(含2 mmol/L CaCl₂) 混匀,取100μL测定噬菌体效价,记作0min,同时 将剩余混合液在 37 ℃, 180 r/min 条件下培养, 每隔 5 min 取样测定噬菌体效价, 直至 1 h。

(1)X = n_1 式中: X----裂解量; n——平稳期噬菌体平均数;

n1--潜伏期噬菌体平均数;

n2--未吸附噬菌体平均数。

其中平稳期平均数指噬菌体效价的变化程度在一 定时间段内不超过1个数量级的噬菌体效价。

1.2.7 噬菌体浓缩液制备、DNA 提取与测序

噬菌体过滤液中加入终含量为 15% (m/V) PEG 8 000 和 0.5 mol/L NaCl 置于 4 ℃过夜后, 在 4 ℃下 12 000 r/min 离心 20 min,将沉淀重悬于 1 mL SM

Buffer 中获得噬菌体浓缩液,加入 10 µL Dnase I (10 Units/µL) 和 0.5 µL RNase A (25 mg/mL) 去除 外源核酸污染,之后加入 20 µL m=10% SDS、1 µL 30 mg/mL 蛋白酶 K 和 20 µL 0.5 mol/L EDTA, 65 ℃ 水浴 20 min,裂解噬菌体。随后使用苯酚-氯仿-异戊 醇(25:24:1)提取噬菌体 DNA。使用限制性内切酶 Pac *I*、Age *I*和 Sph *I*对噬菌体 DNA 进行酶切鉴 定。最后使用 Ion Torrent S5(美国赛默飞)平台测序, 使用 SPAdes v3.13.1^[8]组装高质量的读数,获得噬菌体 核苷酸序列信息。

1.2.8 基因组比对注释与蛋白网络分析

噬菌体核苷酸序列经过 Phageterm 4.0^[9]进行末端 分析修正后通过美国国家生物技术信息中心(National Center for Biotechnology Information, NCBI) 网站上 的比对工具(Basic Local Alignment Search Tool, BLAST) 搜索^[10],获得相似菌株信息,再通过 pyANI 计算相似菌株的平均核苷酸一致性(Average Nucleotide Identity, ANI)^[11]。之后使用 RAST^[12]预测 出假定的开放阅读框(ORF)和初步的基因注释,使 用蛋白比对工具(Basic Local Alignment Search Tool Protein, BLASTp) 对所有 ORFs 在 NCBI 参考序列数 据库(Reference Sequence, RefSeq)中的病毒蛋白数 据库(https://ftp.ncbi.nlm.nih.gov/refseq/release/viral/) 进行检索, 同时使用 tRNAscan-SE^[13]、 DeepTMHMM^[14], InterPro^[15], eggNOG^[16], VFDB^[17] 和 CARD^[18]等检索工具作为 ORF 功能注释的补充进 而获得完整的基因组注释,最后通过 Easyfig^[19]进行基 因组可视化分析。噬菌体蛋白网络分析采用 vConTACT 2.0^[20]计算,使用 cytoscap^[21]进行美化。噬 菌体蛋白质保守结构域检索使用 TCDB^[22]和 CDD^[23] 数据库进行,蛋白同源性检测使用 HHpred^[24]实现。最 终核酸序列已上传至 GenBank, 登录号为 ON864052。 1.2.9 系统进化树的构建

将噬菌体末端酶大亚基氨基酸序列在 NCBI 上进 行 BLASTp 检索非冗余蛋白数据库(Non-Redundant Protein Sequence Database, NR) 数据库, 选取 identity ≥70%序列在 MEGA^[25]上使用邻接法(Neighbor-Joining, NJ) 法构建系统发育树。

1.2.10 数据分析

根据标准对照实验的原则,实验重复3次,数据 使用 Excel 进行数据整理, 使用 GraphPad Prism 8.0 和 R 语言进行数据分析与可视化,运用 ANOVA 进行单 因素方差分析, P<0.05 认为差异具有统计学意义。

2 结果与讨论

2.1 噬菌体的分离与形态表征

图 1 噬菌体不同分离株全基因组酶切图谱

Fig.1 Whole-genome restriction map of different phage isolates

本研究分离纯化得到 17 株噬菌体分别命名为: AA2L1、AA2L2、AA2M1、AA1L、951SL1、951SL2、 AC2L1、AC2、AC2M2、AA1M、951S1、951L1、951L2、 951M1、951S2 和 951M2。通过基因组三酶切的酶切 图谱可以将这批噬菌体分离株分为 4 类, 第一类以 AA2L1 为代表, 酶切图谱在 2 000~5 000 bp、750~ 2 000 bp 和 750 bp 以下的条带数量分别为 1、3、5; 第二类以 AC2L1 为代表, 分布在 2 000~5 000 bp 区域 的酶切条带均比前者多 1条; 剩下两类分别是以951L2 和 951M2 为代表的分离株, 这两类的酶切图谱主要差 异为在 5 000 bp 附近两条带的大小不同(图 1)。

17 株噬菌体的宿主谱鉴定结果如图 2 所示。供试 的副溶血性弧菌宿主共 39 株,覆盖了 13 种副溶血性 弧菌 O 抗原中的 10 种,并且绝大部分具有耐药性 (36/39)。结果表明,本研究中 17 株噬菌体分离株按 宿主谱范围可大致分为两类,一类是宿主谱较窄的分 离株,如 AA2L1,该菌株只能侵染两株宿主(O4-14 和 O5-15),其中 O4-14 为原宿主菌;另一类则是以 AC2 为代表的广谱噬菌体分离株,能侵染 12 株供试 的副溶血性弧菌,占供试菌株的 30.77%。

图 2 不同噬菌体分离株的宿主谱

有趣的是,噬菌体 AC2 在双层平板上会显示两种 不同的斑点形态,如图 3a 红圈内,中间的斑点更通透, 而两边的斑点呈雪花状,并且该现象持续存在于纯化 全过程中,故排除菌株不纯,因此选取噬菌体 AC2 进行后续分析。噬菌体 AC2 是以副溶血性弧菌 O4-14 为宿主,从广州黄沙水产市场的下水道污水中分离出, 透明斑块直径约为1.12 mm,外无晕圈(图 3a)。透射 电镜观察显示其由二十面体头部(直径约为 51.50 nm) 和短而非收缩的尾部(长度约为 14.52 nm)组成 (图 3b 和图 3c),表明它属于短尾噬菌体。根据国际 病 毒 分类 和命 名法指南,将该噬菌体命名为 vB VpP AC2(以下简称 AC2)。

本团队前期获得的弧菌噬菌体 vB_VpP_FE11(以下简称 FE11)^[26]也是短尾噬菌体,其尾部长约 17 nm, 头部为直径约 47 nm 的二十面体,在形态上与本研究 中的噬菌体 AC2 非常相似。除了短尾噬菌体,弧菌噬 菌体的外部形态呈多样化,例如从污水、海洋、虾和 牡蛎中分离出的长尾噬菌体 vB VpS CA8^[27](以下简 称 CA8)、肌尾噬菌体 VB_VpP_BT-1011^[28](以下简称 BT-1011)和丝状噬菌体 V5^[29]等。

在供试的 10 种副溶血性弧菌血清型中,能够侵染的 12 株宿主覆盖了 7 种,并且此 12 株(12/39)均为耐 药菌株。相比于只能裂解 5 株(5/61)覆盖 4 个血清 型的副溶血性弧菌噬菌体 vB_VpS_BA3^[27](以下简称 BA3),其裂解谱更宽。

2.2 噬菌体 AC2 的一步生长曲线与最佳 MOI

一步生长曲线是噬菌体裂解周期的最佳体现。如 图 4a 所示,噬菌体 AC2 在静置吸附后 0~20 min 内裂 解液效价没有明显变化,表明其潜伏期约为 20 min, 25 min 后效价开始上升,上升趋势分为 30 至 50 min 的缓慢上升与 50 至 60 min 的快速上升两个阶段,所 以噬菌体 AC2 裂解期约 35 min,而之后效价出现跨梯 度增长,说明噬菌体发生裂解后再吸附,即 50 min 时 第一次裂解结束。根据计算公式可计算得到噬菌体 AC2 的裂解量为 143 PFU/cell。

determination of phage AC2

本团队前期获得的副溶血性弧菌噬菌体中,短尾 噬菌体 vB_VpP_DE10^[30](以下简称 DE10)具有较小 的裂解量(19 PFU/cell)和中等的潜伏期(25 min), 短尾噬菌体 vB_VpP_DE17^[31](以下简称 DE17)具有 较短的潜伏期(5 min)和中等的裂解量(80 PFU/cell), 而长尾噬菌体 CA8^[27]具有较长的潜伏期(30 min)和 较大的裂解量(180 PFU/cell)。与以上 3 株噬菌体相 比,噬菌体 AC2 具有中等的潜伏期和较大的裂解量, 噬菌体潜伏期和裂解量上的差异可能与它们识别和组 装机制的差异有关。

最佳 MOI 可以反应噬菌体的侵染效率。如图 4b 所示,将噬菌体 AC2 进行十倍梯度稀释(MOI= 0.000 1~100)后的 7 个不同浓度所测定的效价可看 出,当 MOI=0.001~0.1 条件下与宿主共培养时,子代 噬菌体能增殖达到数量最大化,并且三个 MOI 条件 下噬菌体效价没有显著变化 ($P \ge 0.05$),而 MOI=0.000 1 和 MOI=0.001 之间存在显著性差异 (P=0.01, P<0.05),说明噬菌体 AC2 的最佳 MOI 为 0.001~0.1。与噬菌体 vB_VpaP_GHSM17^[32], BA3 和 CA8^[27]相比 (最佳 MOI 均为 0.1),噬菌体 AC2 具有更低且更广的最佳 MOI,说明在噬菌体 AC2 与 宿主互作的过程中,噬菌体侵染效率较高,能够以基 数较少的噬菌体保证自身优势增殖。

2.3 噬菌体 AC2 的基因组分析

噬菌体 AC2 的基因组序列是通过 Ion Torrent S5 测序仪平台获得,共计 6 041 条 reads,长度分布在 25~500 bp, 序列主要分布在 400 bp 附近, 组装后获 得一条唯一的 contig 序列。使用 PhageTerm 进行末端 分析发现, 其包装模式类似于噬菌体 P1 的 Headful 包装^[9,33],即在包装过程中,第一次切割发生在包装 位点 (pac 位置), 直到噬菌体头部衣壳装满后才进行 后续切割,导致终止位置可变。修正后的AC2序列长 44 270 bp, GC 含量为 49.30%。AC2 噬菌体基因组共 预测了 55 个假定的开放阅读框 (ORF), 其中 37 个与 编码已知功能蛋白质的基因相似(占67.27%)可分为 五个功能模块(图5),其余18个ORF被预测编码假 定蛋白。使用 tRNAscan-SE 程序^[13]没有预测出 tRNA 基因。使用 DeepTMHMM^[14]进行跨膜结构域预测,发 现 AC2 含有 3 个编码跨膜结构域蛋白 (gp14、gp43、 gp51)和2个编码信号肽结构域蛋白(gp24、gp27) 的基因。搜索 VFDB^[17]和 CARD^[18]数据库发现, AC2 的基因组中没有毒力或抗生素抗性基因,能够确定噬 菌体 AC2 为烈性噬菌体,并且说明其能够安全的应用 于实际生产中,详细 ORF 注释结果见表 1。

Modern Food Science and Technology

表1 噬菌体 AC2 功能注释

2023, Vol.39, No.7

研究发现,烈性噬菌体 AC2 的基因组中没有发现 可直接注释为内溶素或穿孔素(holin)相关蛋白的 ORF,说明可能存在未解析的相关编码基因。有趣的 是,通过对噬菌体 AC2 中具有跨膜结构的 gp43 和 gp51 进行 HHpred^[24]远源蛋白结构分析发现,gp43 中 含有一个溶血素 XhlA(PF10779)功能域,属于 Haemolysin XhlA(IPR019715)家族,该条目内包括 了芽孢杆菌噬菌体 SPP1 的 Holin 样蛋白 24.1,该蛋白 有类似 holin 的作用^[34], 故推测 gp43 可能具有类似 holin 的功能。同时, gp51 的 N 端含有与 II 型分泌系 统 M 蛋白 (T2SSM 或 EpsM, PF04612) 相似的结构 域, 近期有研究表明霍乱弧菌中 EpsM 蛋白会协助噬 菌体 VP2 注射的 DNA 穿过霍乱弧菌的外膜和内 膜^[35], 故推测 gp51 可能伪装成 EpsM 蛋白, 在侵染过 程中协助噬菌体 DNA 的注入宿主细菌。但关于噬菌 体 AC2 gp43 和 gp51 的具体功能还有待进一步验证。

< /

Table 1 Functional annotations of phage AC2		
CDS	Annotation	Module
gp_1	putative peptidase	Lysis
gp_2	hypothetical protein	Hypothetical
gp_3	primase/helicase protein	DNA metabolism
gp_4	DNA helicase	DNA metabolism
gp_5	putative DNA helicase	DNA metabolism
gp_6	DNA-directed DNA polymerase	DNA metabolism
gp_7	putative DNA polymerase	DNA metabolism
gp_8	transferase activity protein	DNA metabolism
gp_9	HNH endonuclease protein	Packaging
gp_10	Fe-S oxidoreductase	Hypothetical
gp_11	hypothetical protein	Hypothetical
gp_12	DNA binding protein	DNA metabolism
gp_13	sn-glycerol-3-phosphate ABC transporter ATP-binding protein UgpC	Hypothetical
gp_14	HAMP domain-containing protein	DNA metabolism
gp_15	exonuclease activity protein	DNA metabolism
gp_16	hypothetical protein	Hypothetical
gp_17	endonuclease activity protein	DNA metabolism
gp_18	hypothetical protein	Hypothetical
gp_19	ATP-binding protein	DNA metabolism
gp_20	hypothetical protein	Hypothetical
gp_21	DNA-directed RNA polymerase	DNA metabolism
gp_22	hypothetical protein	Hypothetical
gp_23	hypothetical protein	Hypothetical
gp_24	Phage head to tail connecting protein	Structure
gp_25	Phage head to tail connecting protein	Structure
gp_26	Phage head to tail connecting protein	Structure
gp_27	Phage head to tail connecting protein	Structure
gp_28	Phage head to tail connecting protein	Structure
gp_29	Phage head to tail connecting protein	Structure
gp_30	putative scaffolding protein	Structure
gp_31	Phage major capsid protein	Structure
gp_32	hypothetical protein	Hypothetical
gp_33	Phage tail fibers	Structure
gp_34	Phage non-contractile tail tubular protein	Structure

Modern Food Science and Technology 使走 1

CDS	Annotation	Module
gp_35	internal virion protein	Hypothetical
gp_36	internal virion protein	Hypothetical
gp_37	Peptidoglycan lytic exotransglycosylase	Lysis
gp_38	Phage tail fibers	Structure
gp_39	xyloglucosyl transferase activity protein	Additional function
gp_40	Phage terminase small subunit	Packaging
gp_41	Phage terminase large subunit	Packaging
gp_42	hypothetical protein	Hypothetical
gp_43	hypothetical protein	Hypothetical
gp_44	bacterial Ig-like domain family protein	Additional function
gp_45	peptidase M15	Lysis
gp_46	hypothetical protein	Hypothetical
gp_47	hypothetical protein	Hypothetical
gp_48	hypothetical protein	Hypothetical
gp_49	hypothetical protein	Hypothetical
gp_50	helix-turn-helix transcriptional regulator	Hypothetical
gp_51	hypothetical protein	Hypothetical
gp_52	hypothetical protein	Hypothetical
gp_53	hypothetical protein	Hypothetical
gp_54	hypothetical protein	Hypothetical
gp_55	metallopeptidase activity protein, putative peptidase	Lysis

2.4 噬菌体 AC2 的分类地位分析

Fig.6 ANI analysis of the phage AC2 genome

为确定噬菌体的分类学地位,首先从核苷酸相似 性进行分析。基于 BLASTn 比对的结果显示,噬菌体 AC2 菌株与弧菌噬菌体 vB_VpaP_MGD1、 vB_VpP_DE10、H256D1、vB_VpaP_AL-1、F23s2、 vB_Vc_SrVc2、OY1 和 vB_VpaP_NS8 等菌株均存在 较高的核苷酸序列相似性,其中与 vB_VpaP_MGD1 的相似度最高 96.47%,覆盖度 99%。再从基因组序列 同一性(Average Nucleotide Identity, ANI)层面分析 发现(图 6),噬菌体 AC2 与 vB_VpaP_MGD1(以下 简称 MGD1)间的 ANIb 值最高,为 95.62%。

为了进一步明确噬菌体的分类归属,随后从蛋白 质水平进行研究。选取 Millardlab 课题组整理的 GenBank 和 RefSeq 数据库病毒序列合集进行共享网 络分析[36](2022年3月)。网络图每个节点代表一个 病毒,节点之间的连线代表节点的关系,每条线均存 在一个数值,数值越大代表两者越相似,左图中共有 16 744 个节点和 737 929 条连线,图中蓝色节点代表 该噬菌体的宿主为弧菌科菌株,红色圈表示 AC2 所在 位置。可以看到弧菌噬菌体主要存在于噬菌体网络图 的核心簇上,仅少量独立分布,其中 AC2 噬菌体存在 于网络图核心簇中,是核心簇的一个进化分枝。通过 对 AC2 所连接的一级节点进行分析发现, AC2 属于 VC 100 0 病毒簇子集,该子集中共有 15 株噬菌体, 均属于自转录病毒科 (Autograohiviridae), Maculvirus 属, 且均为弧菌噬菌体(图 7B 蓝紫色菱形), 其中 AC2 的蛋白组与其他噬菌体距离相对比较远,相对接

近 的 是 vB_VpP_DE18 、 vB_Vc_SrVc2 和 vB_Vc_SrVc9,具有一定的新颖性。如图 7B 中淡黄 色三角形所代表的节点所示,与 Maculvirus 属相邻的 最大群体是以克雷伯氏菌属菌株为宿主的 Drulisvirus

属噬菌体,两个子集聚集性均较好。因此判断噬菌体 AC2 归属于自转录病毒科(Autograohiviridae), *Maculvirus*属。

图 7 噬菌体 AC2 的蛋白网络图

Fig.7 Protein network diagram of phage AC2

注: 图 A 中蓝色节点代表弧菌噬菌体,图 B 中黄色三角形代表克雷伯氏菌噬菌体,蓝紫色代表弧菌噬菌体。

2.5 噬菌体 AC2 的系统发育分析

图 8 噬菌体 AC2 末端酶大亚基系统发育树

Fig.8 Phylogenetic tree of phage AC2 by the large subunit

terminase

在噬菌体系统进化的过程中,有些基因的保守性 较强,如编码末端酶大亚基蛋白(Large Subunit Terminase, terL)、衣壳蛋白(Capsid Protein)和基板 蛋白(Baseplate Protein)等的基因,因此常选用这些 蛋白的编码基因为标志基因绘制系统进化树。对 AC2 的末端酶大亚基进行 BLASTp 比对后,选取相似度较 高(Identity≥70%)的 28 株菌株构建系统发育树,从 图 8 可以看出, AC2 与另外 10 株 *Maculvirus* 属弧菌 噬菌体形成一个独特的短尾噬菌体分枝,并区别于其 他噬菌体分枝。综上所述,噬菌体 AC2 属于自转录病 毒科(Autograohiviridae), *Maculvirus* 属的新成员。

2.6 噬菌体 AC2 的新颖性与应用潜力

目前使用副溶血性弧菌为宿主分离纯化的噬菌体 主要都属于有尾噬菌体目,并以长尾噬菌体、短尾噬 菌体和肌尾噬菌体居多。虽然噬菌体 AC2 与未表征的 噬菌体 MGD1 相似度较高 (95.47%, ANIb),但与另 外三株相似度较高且已表征的 Maculvirus 属噬菌体 FE11^[26] (91.81%, ANIb),DE17^[31] (92.03%, ANIb) 和 DE10^[30] (93.84%, ANIb),在宿主谱和裂解量上 存在差异。

四株噬菌体宿主谱差异主要表现在,噬菌体 AC2 不能侵染 FE11 的原始宿主菌 O5-15,但可以侵染

DE17 和 DE10 的原宿主 O4-12。再者噬菌体在对 O5-15、O6-18、O11-30、O10-54、O8-22 和 O4-48 这 五株副溶血性弧菌的侵染能力上也存在差异,其中 AC2 可以侵染后两株菌,但 FE1 与 DE17 不能,体现 出不同噬菌体分离株的宿主谱差异性。并且在噬菌体 的 裂 解 量 上,四株噬菌体也有差异,AC2 (143 PFU/cell)的裂解量大于 DE10 (19 PFU/cell),

FE11(37 PFU/cell)和 DE17(80 PFU/cell),也证明 噬菌体 AC2 在 *Maculvirus* 属中的独特性。

独特的宿主谱范围决定噬菌体的应用前景。导致 噬菌体宿主谱差异的原因,可能发生在噬菌体侵染细 菌全过程中。

噬菌体识别并吸附在宿主细菌表面是侵染的第一 步。噬菌体 AC2 的尾纤维蛋白(UTQ72412.1)与 FE11 (QIW87183.1)和 DE17 (QPP19722.1)的相似度均 为 96.06%, 而与 DE10 (QXV72181.1) 的相似度为 99.51%, 该现象能够解释宿主谱差异的一部分原因。 噬菌体不可逆吸附到细菌表面后,短尾噬菌体往往因 其尾部结构较短不能直接穿透细胞膜, 推测 AC2 首先 注射出 gp35-gp37 编码的肽聚糖裂解外转糖基化酶 (Peptidoglycan Lytic Exotransglycosylase)和噬菌体内 部蛋白,在溶解细菌细胞膜的同时形成噬菌体 DNA 注射通道^[37,38],随后噬菌体 DNA 由非收缩尾管(gp34) 注入宿主菌中。噬菌体 DNA 进入宿主细菌后, 通过 劫持细菌的代谢途径,大量合成噬菌体相关蛋白并复 制核酸。在该过程中,细菌会有如 CRISPR-Cas 系统、 限制-修饰系统和流产感染等抵御手段阻止噬菌体的 侵染,同时噬菌体也会有一些如 anti-CRISPR 蛋白的 措施^[39]逃逸细菌的防御屏障,故细菌-噬菌体之间在菌 体内的防御-进攻策略也可能是导致宿主谱差异的另 一原因。

最后,噬菌体能否在内溶素和穿孔素(Holin)等 帮助下成功从细菌中释放,也是影响宿主谱的重要因 素。然而,烈性噬菌体 AC2 和另外三株噬菌体的基因 组中没有发现可直接注释为内溶素或穿孔素相关蛋白 的 ORF,值得注意的是,本研究推测噬菌体 AC2_gp43 可能具有类似 holin 的功能,辅助子代噬菌体从宿主 菌中释放,并且 AC2_gp43 为首个在 *Maculvirus* 属噬 菌体中所表征的 holin-like 功能蛋白,对该属噬菌体裂 解机制的研究提供了新的基础。

综上所述,噬菌体 AC2 在尾部结构上的差异与其 可能含有 holin-like 功能蛋白,使其在宿主谱、一步生 长曲线上与 *Maculvirus* 属的其他噬菌体存在表型上的 差异。并且噬菌体 AC2 具有较低和较广的最佳 MOI 值,能够在噬菌体与宿主互作的过程中,提高噬菌体 侵染效率,进而以基数较少的噬菌体保证自身优势增 殖。同时较大的裂解量和能够裂解多种耐药型菌株的 宿主谱表明,噬菌体 AC2 是一株具备防控副溶血性弧 菌潜力的新噬菌体。

3 结论

本研究主要介绍了噬菌体 AC2 的分离纯化与选 择鉴定过程,并对其生物学特性作初步探究。综合噬 菌体 AC2 的宿主谱范围、最佳感染复数和裂解量等, 可考虑将潜伏期或宿主谱与噬菌体 AC2 互补,同时裂 解量较高的噬菌体组配为噬菌体鸡尾酒,用于耐药性 副溶血性弧菌的防控。本研究使用跨膜结构域预测和 远源蛋白结构域分析相结合的方法,首次解析了 *Maculvirus* 属噬菌体可能的 holin-like 蛋白 (AC2_gp43,UTQ72417.1),提高了对*Maculvirus*属 噬菌裂解细菌并释放子代噬菌体过程的认识。但本研 究仅测定了 AC2 的 MOI 和一步生长曲线,在实际生 产应用前,需要全面评估噬菌体的环境耐受性,如温 度、pH、盐浓度和氯仿等,以及体外防控或消杀实验 和生物膜消除能力等,这些都是未来需要继续深入研 究的方向。

综上所述,本文分离鉴定的烈性噬菌体 AC2 不仅 为噬菌体功能蛋白的研究提供了基因组背景资料,还 能为保障水产养殖加工或食品安全提供较高应用价值 的新噬菌体资源。

参考文献

- Ndraha N, Wong H C, Hsiao H I. Managing the risk of *Vibrio* parahaemolyticus infections associated with oyster consumption: A review [J]. Compr Rev Food Sci Food Saf, 2020, 19(3): 1187-1217.
- [2] You H J, Lee J H, Oh M, et al. Tackling Vibrio parahaemolyticus in ready-to-eat raw fish flesh slices using lytic phage VPT02 isolated from market oyster [J]. Food Res Int, 2021, 150(Pt A): 110779.
- [3] Elmahdi S, Dasilva L V, Parveen S. Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A review [J]. Food Microbiol, 2016, 57: 128-134.
- [4] Letchumanan V, Chan K G, Pusparajah P, et al. Insights into bacteriophage application in controlling *Vibrio* species [J].
 Front Microbiol, 2016, 7: 1114.
- [5] Gutierrez D, Rodriguez-Rubio L, Fernandez L, et al. Applicability of commercial phage-based products against *Listeria monocytogenes* for improvement of food safety in Spanish dry-cured ham and food contact surfaces [J]. Food

现代食品科技

Modern Food Science and Technology

Control, 2017, 73: 1474-1482.

- [6] 江艳华,许东勤,姚琳,等.噬菌体复配抑菌剂对三文鱼中沙
 门氏菌的抑制与保鲜作用[J].农业工程学报,2018,34(16):
 287-293.
- [7] 江艳华,王联珠,李风铃,等.1 株副溶血性弧菌裂解性噬菌
 体 VpJYP2 的生物学特性及应用[J].食品科学,2020,41(14):
 146-152.
- [8] Prjibelski A, Antipov D, Meleshko D, et al. Using SPAdes de novo assembler [J]. Curr Protoc Bioinformatics, 2020, 70(1): e102.
- [9] Garneau J R, Depardieu F, Fortier L C, et al. PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data [J]. Sci Rep, 2017, 7(1): 8292.
- [10] Johnson M, Zaretskaya I, Raytselis Y, et al. NCBI BLAST: a better web interface [J]. Nucleic Acids Research, 2008, 36(suppl-2): W5-W9.
- [11] Pritchard L, Glover R H, Humphris S, et al. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens [J]. Analytical Methods, 2016, 8(1): 12-24.
- [12] Brettin T, Davis J J, Disz T, et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes [J]. Sci Rep, 2015, 5: 8365.
- [13] Chan P P, Lin B Y, Mak A J, et al. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes [J]. Nucleic Acids Res, 2021, 49(16): 9077-9096.
- [14] Hallgren J, Tsirigos K, Pedersen M D, et al. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks [J]. BioRxiv, 2022, 4(8): 487609.
- [15] Blum M, Chang H, Chuguransky S, et al. The InterPro protein families and domains database: 20 years on [J]. Nucleic Acids Research, 2021, 49(D1): D344-D354.
- [16] Cantalapiedra C P, Hernandez-Plaza A, Letunic I, et al. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale [J]. Mol Biol Evol, 2021, 38(12): 5825-5829.
- [17] Liu B, Zheng D, Zhou S, et al. VFDB 2022: a general classification scheme for bacterial virulence factors [J]. Nucleic Acids Res, 2022, 50(D1): D912-D917.
- [18] Alcock B P, Raphenya A R, Lau T T Y, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database [J]. Nucleic Acids Research, 2020, 48(D1): D517-D525.

- [19] Sullivan M J, Petty N K, Beatson S A. Easyfig: A genome comparison visualize [J]. Bioinformatics, 2011, 27(7): 1009-1010.
- [20] Bin J H, Bolduc B, Zablocki O, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks [J]. Nat Biotechnol, 2019, 37(6): 632-639.
- [21] Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks [J]. Genome Research, 2003, 13(11): 2498-2504.
- [22] Saier M H, Reddy V S, Moreno-Hagelsieb G, et al. The transporter classification database (TCDB): 2021 update [J]. Nucleic Acids Res, 2021, 49(D1): D461-D467.
- [23] Lu S, Wang J, Chitsaz F, et al. CDD/SPARCLE: the conserved domain database in 2020 [J]. Nucleic Acids Res, 2020, 48(D1): D265-D268.
- [24] Gabler F, Nam S Z, Till S, et al. Protein sequence analysis using the MPI bioinformatics toolkit [J]. Current Protocols in Bioinformatics, 2020, 72(1): e108.
- [25] Kumar S, Stecher G, Li M, et al. MEGA X: Molecular evolutionary genetics analysis across computing platforms [J]. Mol Biol Evol, 2018, 35(6): 1547-1549.
- [26] Yang M, Chen H, Huang Q, et al. Characterization of the novel phage vB_VpaP_FE11 and its potential role in controlling *Vibrio parahaemolyticus* biofilms [J]. Viruses, 2022, 14(2): 264.
- [27] Yang M, Liang Y, Huang S, et al. Isolation and characterization of the novel phages vB_VpS_BA3 and vB_VpS_CA8 for lysing *Vibrio parahaemolyticus* [J]. Front Microbiol, 2020, 11: 259.
- [28] Gao C, Yang X, Zhao C, et al. Characterization of a novel Vibrio parahaemolyticus host-phage pair and antibacterial effect against the host [J]. Arch Virol, 2022, 167(2): 531-544.
- [29] Dubey S, Singh A, Kumar B, et al. Isolation and characterization of bacteriophages from inland saline aquaculture environments to control *Vibrio parahaemolyticus* contamination in shrimp [J]. Indian J Microbiol, 2021, 61(2): 212-217.
- [30] Ye Y, Chen H, Huang Q, et al. Characterization and genomic analysis of novel *Vibrio parahaemolyticus* phage vB_VpaP_DE10 [J]. Viruses, 2022, 14(8): 1609.
- [31] Yang M, Chen H, Guo S, et al. Characterization and genome analysis of a novel *Vibrio parahaemolyticus* phage vB_VpP_DE17 [J]. Virus Res, 2022, 307: 198580.

- [32] Liang X, Wang Y, Hong B, et al. Isolation and characterization of a lytic *Vibrio parahaemolyticus* phage vB_VpaP_GHSM17 from sewage samples [J]. Viruses, 2022, 14(8): 1601.
- [33] Chatterjee P K, Mukherjee S, Shakes L A, et al. Selecting transpositions using phage P1 headful packaging: new markerless transposons for functionally mapping long-range regulatory sequences in bacterial artificial chromosomes and P1-derived artificial chromosomes [J]. Anal Biochem, 2004, 335(2): 305-315.
- [34] Fernandes S, Sao-Jose C. More than a hole: the holin lethal function may be required to fully sensitize bacteria to the lytic action of canonical endolysins [J]. Mol Microbiol, 2016, 102(1): 92-106.
- [35] Sun H, Liu M, Fan F, et al. The type II secretory system mediates phage infection in *Vibrio cholera* [J]. Front Cell

Infect Microbiol, 2021, 11: 662344.

- [36] Cook R, Brown N, Redgwell T, et al. Infrastructure for a phage reference database: identification of large-scale biases in the current collection of cultured phage genomes [J]. Phage, 2021, 2(4): 214-223.
- [37] Moak M, Molineux I J. Role of the Gp16 lytic transglycosylase motif in bacteriophage T7 virions at the initiation of infection [J]. Molecular Microbiology, 2000, 37(2): 345-355.
- [38] Chen W, Xiao H, Wang L, et al. Structural changes in bacteriophage T7 upon receptor-induced genome ejection [J]. Proc Natl Acad Sci U S A, 2021, 118(37): e2102003118.
- [39] Jia N, Patel D J. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins [J]. Nat Rev Mol Cell Biol, 2021, 22(8): 563-579.