米糠油不饱和脂肪酸对肝癌细胞 HepG₂ 克隆及 迁移能力的影响

梁盈, 刘颖, 王荣, 高宇, 吴伟, 田明慧, 林亲录

(稻谷及副产物深加工国家工程实验室,中南林业科技大学,湖南长沙 410004)

摘要:本研究采用软琼脂克隆形成和 Transwell 小室迁移实验观察分析了米糠油不饱和脂肪酸(RBO-UFA)在体外对 $HepG_2$ 的影响,并通过 Western blot 检测了凋亡相关因子 NF- κB 在用 RBO-UFA 处理前后其表达的变化。Heochst 染色结果显示 $HepG_2$ 经 RBO-UFA 处理后细胞数量明显减少,胞质浓缩,细胞核内染色质凝集;软琼脂克隆形成检测结果显示 $HepG_2$ 经 RBO-UFA 处理后克隆团明显减少,甚至无克隆团出现;迁移检测结果显示亚麻酸和亚油酸抑制 $HepG_2$ 细胞迁移能力的抑制率分别为 $47.45\pm4.60\%$ 、 $41.61\pm4.08\%$,其次是米糠油 $32.85\pm3.24\%$,油酸 $25.55\pm2.56\%$ (P<0.05)。Western Blot 结果显示,RBO-UFA 处理后 $HepG_2$ 细胞全蛋白中 NF- κB 表达水平显著低于正常对照组,米糠油、油酸、亚油酸、亚麻酸处理组与正常对照组相比,其相对表达量分别降低了 0.46 ± 0.017 、 0.058 ± 0.018 ,、 0.25 ± 0.005 、 0.47 ± 0.011 ;而在核蛋白中 NF- κB 表达水平均高于正常对照组,相对表达量分别增加了 0.59 ± 0.036 、 0.053 ± 0.040 、 0.28 ± 0.043 、 0.59 ± 0.007 (P<0.05)。结果表明米糠油不饱和脂肪酸(RBO-UFA)对肝癌细胞 $HepG_2$ 的克隆形成及迁移具有一定的抑制作用。

关键词: 米糠油; 不饱和脂肪酸; HepG₂; 克隆形成; 迁移

文章篇号: 1673-9078(2015)11-7-12

DOI: 10.13982/j.mfst.1673-9078.2015.11.002

Effect of Unsaturated Fatty Acids from Rice Bran Oil on Cloning and

Migration Ability of HepG₂ Cells

LIANG Ying, LIU Ying, WANG Rong, GAO Yu, WU Wei, TIAN Ming-hui, LIN Qin-lu

(National Engineering Laboratory For Rice and By-product Deep Processing, Center South University of Forestry & Technology, Changsha 410004, China)

Abstract: The *in vitro* effects of unsaturated fatty acids of rice bran oil (RBO-UFA) on HepG₂ cells were examined by soft agar colony formation and transwell migration assays. Changes in the expression of the apoptosis-related factor, NF-κB, before and after RBO-UFA treatment were analyzed by western blot assay. Hoechst staining indicated that the number of HepG₂ cells after RBO-UFA treatment was significantly decreased and the cytoplasm and nuclear chromatin were condensed. The soft agar colony formation assay showed that the HepG₂ colonies were markedly reduced after RBO-UFA treatment and no colonies appeared. The migration assay indicated that the inhibition rates of linolenic acid and linoletic acid on the migration ability of HepG₂ cells were up to 47.45 \pm 4.60% and 41.61 \pm 4.08%, respectively, followed by that of rice bran oil (32.85 \pm 3.24%) and that of oleic acid (25.55 \pm 2.56%) (P < 0.05). The western blot results showed that NF-κB expression levels in total proteins from RBO-UFA treated groups were significantly lower than that of the normal control group. Compared with the control group, the relative expression levels of NF-κB in HepG2 cells treated with rice bran oil, oleic acid, linoleic acid, and linolenic acid were reduced by 0.46 \pm 0.017, 0.058 \pm 0.018, 0.25 \pm 0.005, and 0.47 \pm 0.011, respectively. On the other hand, compared with the control group, NF-κB expression levels of NF-κB in HepG2 cells treated with rice bran oil, oleic acid, linoleic acid and linolenic acid were increased by 0.59 \pm 0.036, 0.053 \pm 0.040, 0.28 \pm 0.043, and 0.59 \pm 0.007 (P < 0.05), respectively. In summary, RBO-UPA treatment presented an inhibitory effect on the migration and clonogenicity of HepG₂ hepatic cancer cells.

Key words: rice bran oil; unsaturated fatty acids; HepG₂; clone; migration;

收稿日期:2015-01-21

基金项目:国家自然科学基金(31201348);湖南省自然科学基金(13JJ4086);湖南省农业成果转化项目(2013NK4002);长沙市科技计划项目(K1403039-21) 作者简介:梁盈(1981-),女,副教授,研究方向为分子营养学;通讯作者:林亲录(1966-),男,教授,研究方向为稻谷深加工

米糠是稻谷加工过程中的重要副产物之一,是糙 米在碾白时分离出的胚芽和糠层的混合物。世界上约 有三分之一的米糠出自于中国,每年产量约达 1000 万吨。米糠作为一种很好的油料资源,其含油率一般 在 18%~22% 左右, 可与传统的油料作物大豆的含油量 相媲美。米糠油作为谷物副产物深加工过程中的重要 产物之一,作为非传统油脂,其营养价值远超过菜籽 油、大豆油等传统食用油。近年来,米糠油的生理功 能研究主要集中在其中的几种活性成分上,如谷维素、 生育酚、植物甾醇等,因此米糠油除被用于食用油外, 主要还用于化妆品[1]、制药及日用化品中[2]。而脂肪酸 作为米糠油的主要成分则被忽视。研究表明,脂肪酸, 特别是不饱和脂肪酸对乳腺癌、胃癌、结肠癌、前列 腺癌等[3]恶性肿瘤具有良好的抑制作用,其中 EPA 和 DHA 作用效果明显,通过诱导细胞凋亡显著抑制胃癌 细胞的生长^[4]。NF-κB 是与肿瘤细胞凋亡密切相关的 凋亡因子,参与了多种凋亡基因的转录调控,具有抑 制细胞凋亡以及促进细胞凋亡的双向作用。然大量研 究证据表明, 当细胞发生凋亡或增殖抑制时, 细胞内 NF-κB 表达量下调^[5]。本课题采用软琼脂克隆形成和 Transwell 小室迁移实验观察分析了米糠油不饱和脂 肪酸在体外对肝癌细胞 HepG2 的影响,并通过 Western blot 检测了凋亡因子 NF-xB 在用米糠油不饱和脂肪 酸处理前后表达的变化,以此研究米糠油不饱和脂肪 酸抑制 HepG₂ 的作用机制,为米糠油的深入开发和利 用提供研究基础,并为寻找和开发一种新型的天然抗 癌活性物质提供参考依据。

1 材料与方法

1.1 材料

人肝癌组织细胞系 HepG₂购于湖南省长沙赢润生物技术有限公司; 0.22mPVDF 膜、兔抗人 NF-κB/p65 抗体、MTS: 美国 Millipore 公司; 高糖型 DMEM 培养基: 北京索莱宝科技有限公司; Hoechst 33258 试剂盒、细胞核蛋白与细胞浆蛋白抽提试剂盒: 碧云天生物技术研究所; Transwell 小室(带 8.0 μm 膜, 24 孔板): 美国 Corning 公司; Stained Protein Marker: 美国 Thermo Fisher Scientific 公司; BCA 蛋白定量试剂盒: 康为世纪生物科技有限公司; OLYMPUS IX71 荧光倒置显微镜: 日本奥林巴斯公司; XDS-10 型倒置显微镜: 上海团结仪器制造有限公司; 5418R 型台式冷冻离心机: 德国 eppendorf 公司; JY300C 型电泳仪、转印仪: 北京君意东方电泳仪器有限公司; PHS-3C型 pH 计: 上海仪电科学仪器股份有限公司。

1.2 米糠油的制备

经过课题组前期工作,已从米糠中提取出纯度高的米糠油并对其脂肪酸组成进行了测定^[6],如表 1。

表 1 米糠油中脂肪酸含量测定

Table 1 Determination of the contents of the fatty acids extracted from rice bran oil

脂肪酸	国标含量/%	提取出的米糠油/%
油酸	40~50	40.85
亚油酸	29~42	31.42
棕榈酸	12~18	14.97
硬脂酸	1.0~3.0	1.9274
亚麻酸	<1.0	1.650
花生酸	<1.0	0.8776
花生一烯酸	-	0.6072
棕榈一烯酸	0.2~0.4	0.2466
豆蔻酸	0.4~1.0	0.5431

注: "少表示未列出。

1.3 分组

取 3~5 代对数生长期内且生长融合成单层的细胞,随机分为五组:

正常对照组:加入普通 DMEM 培养液培养;米糠油处理组:加入 0.15 mmol/L 米糠油处理液培养 48小时;油酸处理组:加入 0.20 mmol/L 油酸处理液培养 48小时;亚油酸处理组:加入 0.08 mmol/L 亚油酸处理液培养 48小时;亚麻酸处理组:加入 0.15 mmol/L 亚麻酸处理液培养 48小时。

1.4 米糠油不饱和脂肪酸处理前后 HepG₂

Hoechst 染色观察

将细胞接种在放有盖玻片的 6 孔培养板中,每孔 $1.5\sim2$ mL 细胞悬液($10^5\sim10^6$ 个),48 h 后终止培养,弃培养液,每孔加 1 mL 固定液于 4 °C固定 20 min,固定后用 PBS 漂洗 $2\sim3$ 次,每次 5 min。每孔加 1 mL Hoechst33258 染色液在 37 °C染色 10 min.,染色后用 PBS 洗 3 次,每次 5 min。最后用抗荧光猝灭封片液封片。待干后于荧光倒置显微镜下观察各组细胞凋亡形态变化。

1.5 米糠油不饱和脂肪酸处理前后 HepG₂ 细胞迁移能力测定

当细胞状态良好时换无血清培养基继续培养 24

h,消化计数。将 100 μL 1×10⁵ 个细胞加入到 Transwell 小室中,在 Transwell 外室加入 500 μL 样品,常规培养 8 h。取出用 PBS 洗涤,再用 0.1 %结晶紫染液染色 20 min。用棉签小心擦去微孔膜上层的细胞于倒置显微镜下放大 200 倍计数。每个样本计数 10 个视野。

1.6 米糠油不饱和脂肪酸处理前后 HepG2 克

隆形成能力测定

以 1.2%的低熔点琼脂糖凝胶作为储备胶, 待冷却至 50 ℃时,在 6 孔板中的每个孔里加入 500 μ L 1.2%低熔点琼脂糖和 500 μ L 培养液,混匀待凝固。将细胞消化后,按 2000 个/孔接种。分别加入样品处理液、100 μ L 细胞悬液、400 μ L 1.2%低熔点琼脂糖。混匀冷却到 42 ℃,加入到 6 孔板。凝固后,放入 CO_2 细胞培养箱中培养 14 d。观察并记录克隆形成情况。

1.7 米糠油不饱和脂肪酸处理前后 HepG₂ 全

蛋白与核蛋白的提取

将细胞用胰酶消化离心后加入预冷的 PBS,轻轻洗吹,离心弃上清;细胞在 0 \mathbb{C} 裂解 30 min,细胞用 PBS 洗后用细胞刮子刮下细胞,待成粘液状,小心收集于冰上 EP 管中,于 1000 r/min×10 min 离心后取上清,用 1.5 mL EP 管分装。加入 200 μ L 已添加 PMSF 的细胞浆蛋白提取剂 A,剧烈摇晃 5 s,于 4 \mathbb{C} 下冰浴 10~15 min,再加入 10 μ L 细胞浆蛋白抽提试剂 B,剧烈摇晃 5 s,于 4 \mathbb{C} 下冰浴 1 min,在 14000 g 下离心 5 min,弃上层清液,加入 50 μ L 已添加好的 PMSF 的细胞核蛋白抽提液,剧烈摇晃 15~30 s,于 4 \mathbb{C} 下冰浴 30 min 在 14000 g 下离心 10 min,去上层清液在-80 \mathbb{C} 下保存备用,即得核蛋白。取少量样品蛋白,稀释,用 BCA 蛋白定量试剂盒测定蛋白浓度,并绘制标准曲线,得样品蛋白浓度。

1.8 米糠油不饱和脂肪酸处理前后 HepG2 中

NF-κB 蛋白表达检测

将样品和 SDS 上样缓冲液混匀后上样,静止 20 min 左右,开机电泳(120 V,4 h); 停止电泳,用纯水冲洗,并裁剪;接着用膜的正面去迎接胶面,按正级(红色)→滤纸→膜→胶→滤纸→负极(黑色)的顺序夹紧后转膜,电泳(50 mA,90 min);转膜后加入含 5%牛奶封闭液的摇床上,轻摇 1~2 h; 加 2~3 mL一抗稀释液,摇床过夜;洗膜,加二抗,摇床 2 h,洗

膜显色 $10\sim15$ min,进入暗室显影定影,温度 30 ℃,曝光 $5\sim30$ min,显影 15 min,定影 5 min。用水洗去定影液,晾干后扫描并保存。Western blot 显影条带使用 Image Pro Plus 软件进行相对定量处理分析,测定 3 次灰度值并得到 NF- κ B p65/ β -actin 灰度比值作为蛋白表达量,数据用均数 \pm 标准差表示($x\pm s$)。

1.9 统计处理

实验均重复操作 3 次。数据都使用 SPSS 统计分析软件(17.0 中文版)处理分析,均数 ±标准差表示(x±s)。多组间均数比较采用单因素方差分析(one-way ANOVA),各组间两两比较采用 SNK-q 检验。P<0.05为差异有统计学意义,P<0.01为差异有显著性意义。

2 结果

2.1 处理前后 HepG2 细胞凋亡形态变化

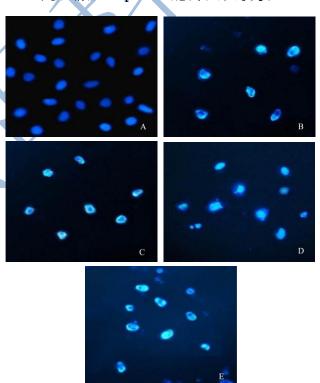


图 1 48 h 不同处理组对 HepG2 细胞凋亡的影响(×200)

Fig.1 Effect of different treatments on the apoptosis of $HepG_2$ cells at 48 h $(\times 200)$

注: A: 正常对照组, B: 米糠油处理组, C: 油酸处理组, D: 亚油酸处理组, E: 亚麻酸处理组。

Hoechst 33258 染色结果(图1)显示正常对照组细胞的细胞核呈圆形,表面光滑,均匀蓝色,内有较深蓝色颗粒,核仁清晰,胞质铺展;部分细胞正处于分裂中,说明细胞处于旺盛生长期(图 1-A)。RBO-UFA 处理组的细胞较正常组数目明显减少,核

质比增大,细胞核凝聚在核膜周围,核仁固缩,颜色明显加深。细胞质皱缩,体积减小或外溢。处于分裂的细胞消失,说明经 RBO-UFA 处理后的细胞的增值能力减弱,细胞已处于衰亡期,形成凋亡小体(图 1-B、C、D、E)。

2.2 处理前后 HepG₂ 细胞克隆形成能力变化

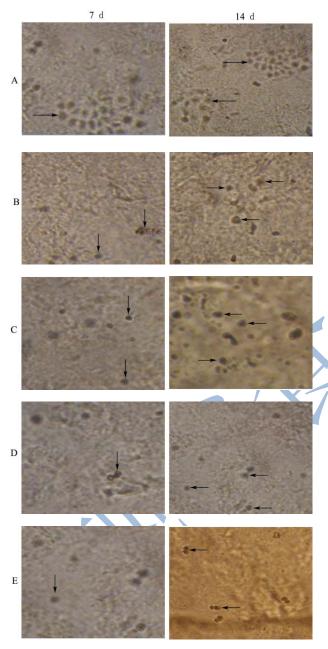
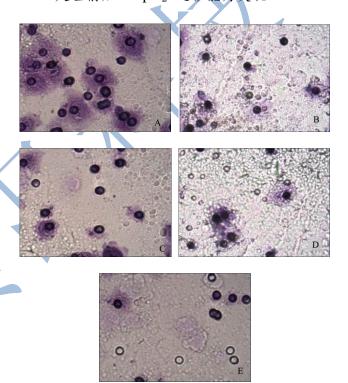


图 2 不同处理组对 HepG₂ 细胞克隆生长的影响 Fig.2 Effect of different treatments on the clonal growth of HepG₂ cells

注: A: 正常对照组, B: 米糠油处理组, C: 油酸处理组, D: 亚油酸处理组, E: 亚麻酸处理组。

接种 1~2 d 内,细胞单个、均匀分散排布。7 d 后, 正常对照组出现少量细胞克隆团,克隆呈扇面状或不 规则的椭圆状,含 4~8 个细胞不等(图 A)。米糠油及不饱和脂肪酸处理组细胞克隆团明显减少,部分细胞出现克隆形成趋势。14 d 后,正常对照组成团生长,细胞紧密堆积,细胞克隆团数量多,部分克隆中心的细胞存在相互重叠现象,克隆边缘仍有不规则的相互延续的单细胞,该现象是典型的繁殖快、恶性程度高的肿瘤细胞的生长特点^[7](图 B-E)。与正常对照组相比,米糠油及不饱和脂肪酸处理的 HepG₂ 在软琼脂上细胞克隆团较少,表明米糠油及不饱和脂肪酸能显著地抑制 HepG₂ 的软琼脂克隆形成。_

2.3 处理前后 HepG₂ 迁移能力变化



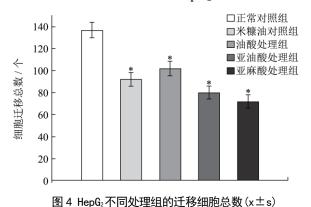

图 3 8 h 不同处理组对 HepG₂细胞迁移的影响 (×400) Fig.3 Effect of different treatments on the migration ability of

Fig.3 Effect of different treatments on the migration ability of HepG $_2$ cells at 8 h (×400)

注: A: 正常对照组, B: 米糠油处理组, C: 油酸处理组, D: 亚油酸处理组, E: 亚麻酸处理组。

Transwell 迁移实验结果(图 3)显示米糠油及不饱和脂肪酸组平均每高倍视野(×200)迁移出小室的细胞数与正常对照组相比均显著减少。随机取 10 个视野并计数,正常对照组为 137±7.2 个,米糠油处理组为 92±6.4 个,油酸处理组为 102±6.7 个,亚油酸处理组为 80±5.9 个,亚麻酸处理组为 72±6.1 个。与正常对照组相比,各组迁移细胞总数分别为 0.67±0.01、0.74±0.01、0.58±0.02、0.53±0.01 倍,迁移抑制率分别为 32.85±3.24%、 25.55±2.56%、 41.61±4.08%、 47.45±4.60%,在 P<0.05 下均有显著性。亚麻酸和亚

油酸抑制 $HepG_2$ 细胞迁移能力的效果最佳,其次是米糠油,油酸稍差(图 4)。实验结果说明米糠油及其不饱和脂肪酸有不同程度的抑制 $HepG_2$ 细胞的迁移能力。

Fig.4 Number of migrated cells in the different groups (x ±s) 注: 'P<0.05, 与正常对照组比较。

2.4 处理前后 HepG₂ 细胞中 NF-кB 在细胞内

表达变化

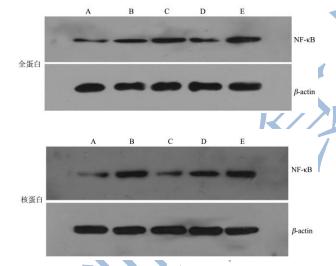


图 5 不同处理组对 $NF-\kappa$ B/p65 在 $HepG_2$ 细胞内表达变化的 \$响

Fig.5 Effect of different treatments on the expression of NF- κ B/p65 in HepG $_2$ cells

注: A: 正常对照组, B: 米糠油处理组, C: 油酸处理组, D: 亚油酸处理组, E: 亚麻酸处理组。

Western blot 免疫印记结果显示: 经过米糠油不饱和脂肪酸处理, HepG₂细胞中 NF-кB 的表达相对正常对照组均有不同程度的下调, 其中以米糠油和亚麻酸处理组的下调水平最大: 而在核蛋白中, 米糠油不饱和脂肪酸处理后 NF-кB 的表达均比正常对照组显著增高(图 5)。图 6 数据处理结果表明: 各处理组 NF-кB蛋白表达水平在全蛋白中显著低于正常对照组, 差异

具有统计学意义(P<0.05),米糠油、油酸、亚油酸、亚麻酸处理组与正常对照组相比,其相对表达量分别降低 0.46±0.017、0.058±0.018、0.25±0.005、0.47±0.011;而在核蛋白中 NF-кB 蛋白表达水平均高于正常对照组,差异具有统计学意义(P<0.05),米糠油、油酸、亚油酸、亚麻酸处理组与正常对照组相比,其相对表达量分别增加 0.590±0.036、0.053±0.040、0.280±0.043、0.590±0.007。

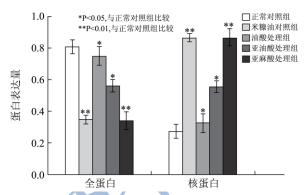


图 6 不同处理组对 NF- x B/p65 在 HepG₂细胞内相对表达量变化 的影响 (x±s)

Fig.6 Effect of different treatments on the relative expression levels of NF- κ B/p65 in HepG₂ cells (x \pm s)

注: P<0.05,与正常对照组比较, 'P<0.01,与正常对 照组比较。

3 讨论

作为人体日常生活饮食中必不可少的膳食营养 素,脂肪酸特别是不饱和脂肪酸是否对肝癌细胞具有 抑制其生长和转移的作用,尚未阐明。本课题主要研 究米糠油中不饱和脂肪酸对肝癌细胞克隆及生长的影 响,以此研究米糠油不饱和脂肪酸抑制肝癌细胞的作 用效果。Hoechst33258染色结果显示米糠油不饱和脂 肪酸处理后的凋亡细胞中细胞核出现致密浓染或呈碎 片状。这与王占有[8]采用 EPA 和 DHA 两种多不饱和 脂肪酸处理HepG2细胞48h后荧光染色的观察结果一 致。这可能由于多不饱和脂肪酸是构成细胞膜的结构 脂肪酸,通过添加多不饱和脂肪酸可以改变生物膜的 通透性、跨膜电位等,从而导致细胞凋亡甚至死亡[3]。 迁移是肿瘤细胞生长过程中必不可少的环节之一,也 是所有恶性肿瘤细胞共同的特征^[9]。研究表明: n-3 多 不饱和脂肪酸可以抑制肿瘤细胞的迁移。易龙[10]研究 发现, 0.06 mmol/L 的 EPA 和 DHA 18 h 时对 HepG? 细胞迁移抑制率分别为 35.88 ±10.98%、43.14 ±8.81%。 胡振东等[11]发现亚麻酸抑制肺腺癌干细胞迁移时,24 h 迁移抑制率可达 30%以上。本研究证实米糠油不饱 和脂肪酸能抑制肝癌细胞的迁移能力,迁移抑制率大 于 25%。亚麻酸的抑制迁移率在 8 h 就达到了 47%以上,效果突出。肿瘤细胞的另一个显著特征是恶性增殖,软琼脂克隆形成实验可以反映细胞群体依赖性和增殖能力,尤其是肿瘤系细胞。本研究发现正常 HepG2细胞增殖速度快,细胞成团生长,紧密堆集,这是典型的繁殖快、恶性程度高的肿瘤细胞的生长特点^[7]。而米糠油不饱和脂肪酸处理后 HepG2细胞的空间克隆形成率显著降低,细胞在接种密度为 2000 cells/孔下无克隆形成。Sell 等^[12]认为仅有少数的癌细胞是致瘤性的细胞,而那些可在软琼脂上形成克隆的肿瘤细胞有可能就是肿瘤干细胞(cancer stem cell, CSS)或肿瘤起始细胞(tumor initiating cell, TSC)。我们的结果清楚的显示米糠油、油酸、亚油酸和亚麻酸可以抑制细胞迁移和克隆形成。

另一方面,于建中^[13]用一定浓度的番荔枝内酯单体(DES)和顺铂(DDP)处理 HepG₂细胞后发现细胞内 NF-кB/p65 表达量下降,HepG₂细胞增殖被抑制。n-3 多不饱和脂肪酸可以有效下调乳腺癌细胞中NF-кB的表达^[14]。本研究发现,经米糠油不饱和脂肪酸处理 HepG₂细胞后,全蛋白中的 NF-кB 表达较正常对照组的 HepG₂细胞显著下调,与其在其他肿瘤细胞经抗癌物处理后的表达变化一致。而经处理后的HepG₂细胞核蛋白中的 NF-кB 表达较正常对照组上调,推测经米糠油不饱和脂肪酸作用后发生了从胞质到胞核的转运,米糠油不饱和脂肪酸有刺激 NF-кB 激活,促进 NF-кB 向细胞核转移的作用,从而抑制HepG₂细胞的增殖。

4 结论

通过软琼脂克隆形成和Transwell 小室迁移实验观察得出米糠油不饱和脂肪酸(RBO-UFA)在体外对Hep G_2 具有一定的抑制作用,并通过Western blot检测了凋亡相关因子NF- κ B在用RBO-UFA处理前后其表达的变化,表明米糠油不饱和脂肪酸对Hep G_2 细胞细胞增殖的抑制作用机制可能通过促使NF- κ B发生核转运进而激活周期阻滞相关因子的表达而使Hep G_2 发生S期阻滞,达到抑制Hep G_2 增殖的作用效果。

参考文献

- [1] Daniela S, Tatiana A, Naira R, et al. Formation and stability of oil-in-water nanoemulsion containing rice bran oil: in vitro and in vivo assessments [J]. Journal of Nanobiotechnology, 2011, 9(44): 1-9
- [2] Ammar H O, Al-Okbi S Y, Mostafa D M, et al. Rice bran oil: preparation and evaluation of novel liquisolid and semisolid

- formulations [J]. International Journal of Pharmacy, 2012, 16(6): 516-523
- [3] 曾田,陆晓媛.多不饱和脂肪酸对恶性肿瘤作用机制研究进展[J].医学综述,2013,19(18):3318-3320
 ZENG Tian, LU Xiao-yuan. The reseach progress of function mechanisms of poly unsaturated fatty acid in neoplasms [J]. Medical Recapitulate, 2013, 19(18): 3318-3320
- [4] 王宝贵,张晖,丁伟,等.ω-3 多不饱和脂肪酸对胃癌细胞系生长抑制作用及其机制的研究[J].中华肿瘤防治杂志,2011,18(5):336-338
 WANG Bao-gui, ZHANG Hui, DING wei, et al. Apoptosis of human gastric cancer cells induced by ω 3 polyunsaturated fatty acids [J]. Chinese Journal of Cancer Prevention and Treatment, 2011, 18(5): 336-338
- [5] Dutta J, FanY, Gupta N, et al. Current insights into the regulation of programmed cell death by NF-κB [J]. Oncogene, 2006, 25: 6800-6816
- [6] 喻凤香,林亲录,黄中培,等.米糠油制备及其脂肪酸的气相 色谱分析[J].食品研究与开发,2013,34(3):72-75 YU Feng-xiang. LIN Qin-lu, HUANG Zhong-pei, et al. The extraction of rice bran oil and analysis of the fatty acids [J]. Food Reseach and Development, 2013, 34(3): 72-75
- [7] 谢斌,左莉,蒋志奎,等.全反式维甲酸诱导 HepG₂ 细胞分化和降低软琼脂克隆形成[J].安徽医科大学学报, 2007, 42(2): 143-146

 XIE Bin, Zou LI, Jiang Zhi-kui, et al. Differentiation induced and colony formation breakdown in HepG₂ cells treated with

all-trans-retinoic acid [J]. Acta Universitatis Medicinalis


[8] 王占有.ω-3 多不饱和脂肪酸诱导人肝癌细胞 HepG₂ 凋亡及其分子机制的研究[D].洛阳:河南科技大学,2010 WANG Zhan-you. The study on the effects and molecular mechanisms of the apoptosis induced by ω-3 polyunsaturated fatty acids in hepatocarcinoma HepG₂ cell line [D]. Luo Yang: HeNan University of Science and Technology, 2010

Anhui, 2007, 42(2): 143-146

- [9] 何可,许庆文.n-3 多不饱和脂肪酸及结直肠癌模型建立的研究现状[J].海南医学,2013,24(2):272-274 HE Ke, XU Qing-wen. The status of the established model of colorectal cancer by n-3 polyunsaturated fatty acids [J]. Hainan Medical Journal, 2013, 24(2): 272-274
- [10] 易龙. RhoGTP 酶在 ω-3 多不饱和脂肪酸抑制肿瘤转移中的作用[D].重庆:第三军医大学,2007
 YI Long. Role of RhoGTPase in inhibiting metastatic ability of tumor [D]. Chong Qing: Third Military Medical University, 2007

- [11] 胡振东,尹荣,吴雅琴,等.多不饱和脂肪酸不同组分抑制肺 腺癌干细胞作用研究[J].南京大学学报(自然科学), 2013, 49(1):116-122
 - HU Zhen-fong, YIN Rong, Wu Ya-qin, et al. The study of polyunsaturated fatty acids aomponents inhibiting lung adenocarcinoma stem cells [J]. Journal of Nanjing University (Natural Science), 2013, 49(1): 116-122
- [12] Sell S, Leffert H L. Liver cancer stem cells [J]. Journal of Clinical Oncoogly, 2008, 26: 2800-2805
- [13] 于建中.番荔枝内酯单体对 HepG2.2.15 细胞株细胞凋亡、 NF-κB/p65 表达的影响[D].广州:暨南大学,2008

- line apoptosis and NF-κB/p65 by acetogenin monomers [D]. Guang Zhou: Jinan University, 2008
- [14] Zhao Y, Joshi-Barve S, Barve S, et al. Eicosapentaenoic acid prevents LPS- induced TNF-alpha expression by preventing NF-κB activation [J]. Journal of the American College of Nutrition, 2004, 23(1): 71-78

