黑穗醋栗果实多糖清除自由基活性及结构初步研究

徐雅琴, 宋秀梅, 任中杰, 邵铁华, 张鑫

(东北农业大学理学院,黑龙江哈尔滨 150030)

摘要:以黑穗醋栗果实为原料,分别用80%、70%、60%、50%、40%、30%乙醇醇沉并采用D4006大孔树脂初步纯化制备6 种多糖。分别进行DPPH、OH·和O₂·清除试验,结果表明6种多糖对自由基均有不同程度的清除作用,其中80%醇沉制备的多糖 (BCP-1)对三种自由基的清除作用最强。利用葡聚糖凝胶 SephadexG-100 对 BCP-1 纯化制备均一组分 BCP-1-II,采用气相色谱法 和高效液相色谱法对 BCP-1-II 进行单糖组成分析及分子量测定。结果表明:BCP-1-II分子量为51880u,并且由4种单糖组成,摩尔 比为阿拉伯糖:甘露糖:葡萄糖:半乳糖=9.08:1.00:15.77:0.41。红外光谱扫描结果表明其含有多糖的特征吸收峰,并且可能含有吡喃糖环 及 α-糖苷键。

关键词:黑穗醋栗;多糖;自由基;分子量;单糖组成 文章篇号:1673-9078(2013)12-2821-2825

Analysis of Structure and Free Radical Scavenging Activities of Ribes

nigrum Polysaccharides

XU Ya-qin, SONG Xiu-mei, REN Zhong-jie, SHAO Tie-hua, ZHANG Xin

(College of Science, Northeast Agricultural University, Harbin 150030, China)

Abstract: Six kinds of crude polysaccharides were precipitated with 80%, 70%, 60%, 50%, 40% and 30% ethyl alcohol respectively from *Ribes nigrum* fruit. Then the DPPH·, OH· and O₂⁻ scavenging activities were investigated after purified by macroporous resin D4006. The results showed that six kinds of polysaccharides had certain scavenging activities and the polysaccharides precipitated with 80% ethanol (BCP-1) had stronger free radical elimination capacity. Homogeneous component (BCP-1-II) was prepared after further purification from BCP-1 by Sephadex G-100. The compositions of the main fraction BCP-1-II were identified and quantified by GC and HPLC. Results indicated that BCP-1-II had an average molecular weight of 51880 u and contained arabinose, mannose, glucose and galactose with the molar ratio of 9.08:1.00:15.77:0.41. Characteristic absorption of polysaccharide was shown in IR spectrum and the monomer of backbone of BCP-1-II might be α -pyranose.

Key words: Ribes nigrum; poly saccharide; free radical; molecular weight; monosaccharide composition

多糖,又称多聚糖,是由10个以上的单糖通过糖 苷键连接而成的一种高分子化合物。研究表明,多糖 具有免疫调节、抗肿瘤、抗氧化、降血糖、降血脂、 抑菌、抗炎、抗病毒等多种生物活性^[1]。目前多糖的研 究较多的集中在药用植物多糖和真菌多糖,而对于小 浆果-黑穗醋栗果实多糖的研究相对较少^[2-3]。

黑穗醋栗《Ribes nigrum L),又名黑加仑,俗名黑 豆果,是虎耳草科茶藨子属多年生小灌木。黑穗醋栗 果实有广泛的经济用途,既可以鲜食,又可用黑穗醋 栗果实为原料,加工制成各种黑穗醋栗果酱、果冻、 果酒、糖果、清凉饮料等系列产品。

收稿日期: 2013-08-28

基金项目:黑龙江省教育厅资助项目(12531023);黑龙江省研究生创新科研项目(YJSCX2012-010HLJ) 作者简介:徐雅琴(1964-),女,教授,主要研究方向为天然产物化学 黑穗醋栗果实不仅风味独特,而且含有丰富的黄酮、花色苷、多糖、维生素、氨基酸、脂肪酸及矿物质元素等多种活性物质,具有重要的生理活性^[4-5]。研究表明黑穗醋栗多糖具有免疫调节作用、抗肿瘤活性及辅助降低血清胆固醇作用^[6]。黑穗醋栗果实清除自由基活性的研究主要集中在黄酮、花色苷等组分上^[7]。对于黑穗醋栗多糖清除自由基活性的研究报道较少,而且只局限于粗多糖^[8]。

目前对于多糖的提取常采用醇沉法,而不同浓度 的醇得到的多糖的分子量不同,结构也不同,而结构 对多糖的活性影响较大。对于不同乙醇浓度醇沉所得 黑穗醋栗果实多糖的体外清除自由基活性比较及80% 乙醇醇沉所得多糖的结构尚未见报道。本试验通过不 同乙醇浓度醇沉得到不同组分黑穗醋栗果实多糖,进 行体外清除自由基活性试验,筛选得到高活性黑穗醋 栗多糖并对结构初步测定。此研究可为黑穗醋栗多糖 的进一步开发利用提供理论依据。

1 材料与方法

1.1 材料与试剂

黑穗醋栗(黑丰),东北农业大学园艺站;1,1-二 苯基-2-苦味酰基自由基(DPPH)、单糖标准品 D-葡 萄糖、D-半乳糖、D-鼠李糖、D-甘露糖、D-阿拉伯糖、 果糖,Sigma 公司;葡聚糖 DextranT-10、T-40、T-70、 T-110,北京拜尔迪生物公司;大孔吸附树脂 D4006, 南开大学化工厂;葡聚糖凝胶 Sephadex G-100, Pharmacia 公司进口分装;浓硫酸、苯酚、邻二氮菲、 抗坏血酸、邻苯三酚等均为分析纯。

1.2 仪器

JY92-2D 超声波细胞粉碎机,宁波新芝生物科技股份有限公司;TU-1901 双光束紫外可见分光光度计, 北京普析通用仪器有限责任公司;FTS135 型傅立叶变换红外光谱仪,美国 BID-BAD 公司;高效液相色谱 仪岛津 LC-10AVP,日本岛津公司;气相色谱仪,日本岛津公司。

1.3 方法

1.3.1 黑穗醋栗果实多糖的制备

称取一定量黑穗醋栗果实匀浆,按液料比 20:1 (mL/g)加入去离子水,功率 400 W,超声波提取 25 min,提取液过滤、浓缩,分别用 80%、70%、60%、 50%、40%、30%乙醇进行沉淀,4℃冰箱静置过夜, 所得沉淀冻干,得到 6 种紫红色黑穗醋栗果实粗多糖。 1.3.2 黑穗醋栗果实多糖的初步纯化

选取大孔树脂 D4006 对 1.3.1 中所得 6 种粗多糖 进行初步纯化,上样浓度 4.0 mg/mL,上样流速 1.0 mL/min,收集流出液;然后以去离子水为洗脱剂,洗 脱流速 1.0 mL/min,收集洗脱液。苯酚-硫酸法跟踪检 测多糖含量,合并多糖流出液和洗脱液。所得多糖溶 液浓缩、冻干得到 6 种灰白色多糖并依次命名为 BCP-1、BCP-2、BCP-3、BCP-4、BCP-5及 BCP-6。 苯酚-硫酸法检测其纯度分别为 57.2%、53.6%、56.9%、 54.2%、50.4%、52.5%。紫外光谱扫描结果显示,6 种多糖在 280、260 nm 处均无吸收,表明不含蛋白质、 多肽及核酸,在 520 nm 处无吸收,表明不含花色苷 等色素类物质。

1.3.3 黑穗醋栗果实多糖的清除自由基试验 按照文献方法,对 BCP-1、BCP-2、BCP-3、BCP-4、 BCP-5 及 BCP-6 分别进行 DPPH·清除试验^[9]、OH·清 除试验^[10]、O₂·清除试验^[11],选择清除自由基活性较 高的组分进一步纯化,制备均一组分多糖。

1.3.4 葡聚糖凝胶法分离纯化 BCP-1 的研究

称取 5.0g 葡聚糖凝胶 SephadexG-100, 加适量去 离子水煮沸 6 h, 超声脱气后装柱。用蒸馏水平衡 72 h, 当填料液面高度保持不变即可使用。

称取 10 mg BCP-1 溶于 10 mL 去离子水后上样, 用去离子水进行洗脱,洗脱流速 20 mL/h,每 3 min 为一管,每管 1 mL 收集洗脱液,苯酚-硫酸法跟踪检 测至无糖检出,收集各主峰组分 BCP-1-I、BCP-1-II、BCP-1-III。富集主峰 BCP-1-II,冻干得到固体精 多糖 BCP-1-II。

1.3.5 BCP-1- || 的纯度鉴定

将 BCP-1-II上样于平衡好的 SephadexG-100 柱 上,以去离子水进行洗脱,苯酚-硫酸法检测多糖含 量,绘制洗脱曲线并观察峰形。

1.3.6 BCP-1-11的分子量测定

1.3.6.1 色谱条件

日本 Shimadzu 公司高效液相色谱仪;色谱柱: Waters Ultrahydroge 2000, 7.8×300 mm;洗脱剂:超 纯水;检测器:示差折光检测器 RID-10A;数据处理 工作站:Shimadzu CLASS-Vp 工作站;进样量:10 μL; 流速: 1.0 mL/min,压力: 1.4 MPa。

1.3.6.2 BCP-1- II 分子量的测定

精密称取各葡聚糖标准品配制成 2.0 mg/mL 溶 液,0.45μm 微孔滤膜过滤后进样,体积 10μL,测定 色谱峰保留时间,以保留时间为横坐标,标准品分子 量的对数值为纵坐标,绘制标准曲线。称取精多糖 BCP-1-II 按上法操作,得到保留时间,计算分子量。 1.3.7 BCP-1-II 的单糖组成分析

1.3.7.1 色谱条件

石英毛细管色谱柱;检测器:氢火焰离子化检测器(FID);程序升温:180℃(5℃/min)~220℃(10℃/min)-280℃(20min);汽化温度280℃;检测器280℃;载气:高纯氮气。

1.3.7.2 BCP-1-II的单糖组成分析

按照文献^[12]方法,将 BCP-1-II进行酸水解,将各 单糖标准品进行衍生化后混合进样,气相色谱仪进行 分析检测(肌醇作为内标),计算 BCP-1-II的单糖组 成。

1.3.8 黑穗醋栗多糖的红外光谱分析

采用溴化钾压片法,在 4000~500 cm⁻¹ 范围内进行红外光谱扫描,鉴定主要官能团。

1.3.9 数据处理

现代食品科技

所有试验均进行三次重复,所有数据均以平均值 ±标准偏差(mean±SD)表示。

2 结果与讨论

2.1 黑穗醋栗果实多糖的清除自由基活性

2.1.1 DPPH·清除试验

BCP-1、BCP-2、BCP-3、BCP-4、BCP-5及 BCP-6 对 DPPH:清除作用如图 1。

Fig.1 Elimination effect of six *Ribes nigrum* polysaccharides and Vc on DPPH·

注: BCP-1 为 80% 乙醇醇沉多糖; BCP-2 为 70% 乙醇醇沉 多糖; BCP-3 为 60% 乙醇醇沉多糖; BCP-4 为 50% 乙醇醇沉多 糖; BCP-5 为 40% 乙醇醇沉多糖; BCP-6 为 30% 乙醇醇沉多糖。

如图 1 所示, BCP-1、BCP-2、BCP-3、BCP-4、 BCP-5、BCP-6 及 Vc 在 0.2~1.2 mg/mL 范围内对 DPPH 均具有不同程度的清除作用,清除率最高值分 别为 95.81%、94.29%、95.80%、94.54%、85.96%、 54.51%和 96.37%,但清除率均低于 Vc, BCP-1、BCP-2 及 BCP-3 对 DPPH 清除作用较强,随着浓度的不断增 加清除率达到最高值后变化不大。BCP-4、BCP-5 及 BCP-6 对 DPPH 的清除作用均表现出明显的浓度依赖 性。

2.1.2 OH·清除试验

BCP-1、BCP-2、BCP-3、BCP-4、BCP-5及BCP-6 对 OH:清除作用如图 2。

如图 2 所示, BCP-1 及 Vc 在 0.2~1.2 mg/mL 范围 内对 OH 具有较强的清除作用,清除率均随着浓度的 增大而增大,最大值分别为 57.66% 和 87.99%。BCP-2、 BCP-3、BCP-4、BCP-5 及 BCP-6 在该浓度范围内对 OH 也具有一定的清除作用,清除率随着浓度的增大 先升高后降低。BCP-2、BCP-3、BCP-4 及 BCP-6 在 浓度为 0.6 mg/mL 时清除率达到最大值,分别为 28.30%、24.58%、20.87% 和 18.63%。BCP-5 在浓度 为 0.4 mg/mL 时清除率达到最大值 17.18%。

and Vc on O₂-

如图 3 所示,各多糖对 O₂·均具有一定的清除作 用。BCP-1、BCP-3 及 Vc 在 0.2~1.2 mg/mL 范围内对 O₂·的清除率均随着浓度的增大而增大,最大值分别 为 71.05%、50.88%和 96.84%。BCP-2 和 BCP-4 对 O₂·的清除率随着浓度的增大先升高后降低,最大值 分别为 51.75%和 44.74%。BCP-5 和 BCP-6 的最高清 除率分别为 21.05%和 29.82%。

综上所述,6种多糖对 DPPH、OH、O2·均有一定的清除作用,但是不同乙醇浓度醇沉所得到的6种 多糖对自由基的清除作用不同,究其原因不同乙醇浓 度醇沉得到多糖分子量不同,结构也不同。多糖的生 物活性与其结构、分子量等有着密切的关系,因此6 种多糖清除自由基的活性不同。在这6种多糖中80% 乙醇醇沉所得 BCP-1对3种自由基具有非常明显的清 除作用,所以选择 BCP-1进一步的纯化及结构鉴定。

2.2 SephadexG-100 纯化 BCP-1

用葡聚糖凝胶 SephadexG-100 纯化 BCP-1 结果如

Fig.4 Elution curve of BCP-1 on SephadexG-100

如图 4 所示,用去离子水洗脱得到 BCP-1-I、 BCP-1-II、BCP-1-III3 个多糖洗脱峰,其中 BCP-1-II 多糖的含量较高。将 BCP-1-II多次富集后浓缩,冻 干,备用。

2.3 BCP-1-II 的纯度鉴定

SephadexG-100 葡聚糖凝胶检验 BCP-1-II 的纯 化效果如图 5。

Fig.5 Elution curve of SephadexG-100 column

chromatography of BCP-1- II

由图 5 可以看出,洗脱峰为单一吸收峰,峰形狭 窄且对称,且无拖尾现象说明 BCP-1-II 纯度较高。

2.4 BCP-1-II分子量的测定

根 据 高 效 液 相 色 谱 分 析 得 到 各 标 准 品 DextranT-10、DextranT-40、DextranT-70、DextranT-110 保留时间及其重均分子量 M_w,绘制以 M_w的对数为 纵坐标,保留时间为横坐标的标准曲线。回归方程: y = -0.3406x + 11.964 ($R^2 = 0.9911$)。BCP-1-II的液相 色谱图如图 6。

由图 6 可知, BCP-1- II 保留时间 21.178 min, 根据回归方程计算可得 BCP-1- II 的重均分子量为 51880 u。

各里糖标准品及 BCP-1-11 的气相色谱分析结果 见表 1。

气相色谱分析结果表明,黑穗醋栗多糖 BCP-1-II 由阿拉伯糖、甘露糖、葡萄糖和半乳糖组成,其摩 尔比为阿拉伯糖:甘露糖:葡萄糖:半乳糖=9.08:1.00:

现代食品科技

Modern Food Science and Technology

15.77:0.41.

表 1 单糖标准品及 BCP-1- || 水解物的气相色谱分析结果

Table 1 Gas chromatography results of BCP-1- II and

monosaccitariae standarus					
单糖标	标准品出峰 峰面		黑穗醋栗精多糖 BCP-1-Ⅱ		
准品	时间/min	积	出峰时间	峰面积	摩尔比
鼠李糖	8.321	202815			
阿拉伯糖	8.934	189245	8.929	145967	9.08
木糖	9.246	237933			
甘露糖	11.318	394560	11.288	40940	1.00
葡萄糖	11.663	195411	11.664	314254	15.77
半乳糖	12.016	180563	11.999	60849	0.41
肌醇(内标)	13.032	700293	13.010	508015	

2.6 BCP-1-II的红外光谱分析

图 9 BCP-1-11 的红外光谱图

Fig.9 IR spectra of BCP-1-II

从图 9 中可以看出,在 4000~500 cm⁻¹范围内, BCP-1-II表现出明显的多糖特征吸收峰。3386.89 cm⁻¹ 处强且宽的吸收峰为多糖中 O-H 的伸缩振动,2937.85 cm⁻¹处为 C-H 伸缩振动,1733.40 cm⁻¹和 1608.05 cm⁻¹ 处为酯化羰基 C=O 和羧基 COO-的伸缩振动,1417.83 cm⁻¹处为羧基的伸缩振动,说明多糖 BCP-1-II 组分中 存在糖醛酸,这与硫酸-咔唑法测定结果相吻合(文中 没有列出),1022.29 cm⁻¹ 处为糖环内 C-O 的伸缩振动, 918.80 cm⁻¹ 处显示吡喃环的非对称环伸缩振动, 822.88 cm⁻¹处为 α-糖苷键的特征峰。

3 结论

本文从黑穗醋栗(黑丰)中提取多糖,分别用80%、70%、60%、50%、40%、30%乙醇醇沉并初步纯化后得到不同多糖BCP-1、BCP-2、BCP-3、BCP-4、BCP-5及BCP-6,清除自由基活性试验结果表明,6种多糖对DPPH·、OH·、O2·均有不同程度的清除作用,其中BCP-1对三种自由基的清除作用最强,因此选择

BCP-1进行研究。通过葡聚糖凝胶对 BCP-1进行纯化, 得到均一组分多糖 BCP-1-II。其分子量为51880 u, 单糖组成为阿拉伯糖、甘露糖、葡萄糖和半乳糖,其 摩尔比为 9.08:1.00:15.77:0.41。红外光谱扫描结果表 明其含有多糖的特征吸收峰,并且可能含有吡喃糖环 及 α-糖苷键。

参考文献

- Aizhen Zong, Hongzhi Cao, Fengshan Wang. Anticancer polysaccharides from natural resources: A review of recent research [J]. Carbohydrate polymers, 2012, 90(4): 1395-1410
- [2] Liqun Yang, Li-Ming Zhang, Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources [J]. Carbohy drate Polymers, 2009, 76(3): 349-361
- [3] Hauke Hilz, Edwin J Bakx, Henk A Schols, et al. Cell wall polysaccharides in black currants and bilberries-characterisation in berries, juice, and press cake [J].
 Carbohy drate Polymers, 2005, 59(4): 477-488
- [4] Tatsuo Suzutani, Masahiro Ogasawara, Itsuro Yoshida, et al. Anti-herpesvirus activity of an extract of *Ribes nigrum* L [J]. PhytotherResearch, 2003, 17(6): 609-613
- [5] Jessica Tabart, Thierry Franck, Claire Kevers, et al. Antioxidant and anti-inflammatory activities of *Ribes nigrum* extracts [J]. Food Chemistry, 2012, 131(4): 1116-1122
- [6] Ryoji Takata, Reiko Yamamoto, Takaaki Yanai, et al. Immunostimulatory effects of a polysaccharide-rich substance with antitumor activity isolated from black currant (*Ribes nigrum* L.) [J]. Bioscience, Biotechnology and Biochemitry, 2005, 69(11): 2042-2050
- [7] Na Jia, Youling L Xiong, Baohua Kong, et al. Radical scavenging activity of black currant (*Ribes nigrum* L.)extract and its inhibitory effect on gastric cancer cell proliferation via induction of apoptosis [J]. Journal of Functional Foods, 2012, 4(1): 382-390
- [8] 王晓燕.黑加仑多糖抗氧化及降血脂实验研究[D].新疆:新 疆医科大学,2009

WANG Xiao-yan. The Experimental study on antioxidative and hypolipidemic of blackcurrant polysaccharide [D]. Xinjiang: Xinjiang Medical University, 2009

- [9] Rufeng Wang, Ping Chen, Fang Jia, et al. Characterization and antioxidant activities of polysaccharides from *Panax japonicus* C.A. Meyer [J]. Carbohydrate Polymers, 2012, 88(4): 1402-1406
- [10] Liangshuan Zhang, Xuan Wang, Lulu Dong. Antioxidation and

antigly cation of polysaccharides from *misgurnus anguillicaudatus* [J]. Food Chemistry, 2011, 124(1): 183-187

[11] 朱振元,原静,李盛峰,等.古尼虫草多糖硫酸酯化修饰及其抗 氧化活性[J].现代食品科技,2011,27(1):1-5

ZHU Zhen-yuan, YUAN Jing, LI Sheng-feng, et al. Preparation of sulfured polysaccharides from *Cordyceps gunnii* and its anti-oxidation activity [J]. Modem Food Science and Technology, 2011, 27(1): 1-5

[12] 聂永心,姜红霞,苏延友,等.黄伞子实体多糖的提取纯化及单 糖组成分析[J].食品与发酵工业,2010,36(4): 198-200
NIE Yong-xin, JIANG Hong-xia, SU Yan-you, et al. Purification and Monosaccharide Composition Analysis of Polysaccharide from Fruit Bodies of *Pholiota adipose* [J]. Food and Fermentation Industries, 2010, 36(4): 198-200