沉淀法制取茶皂素的工艺研究

刘红梅¹,周建平²,李海林¹,郭华¹

(1. 湖南农业大学实管中心, 湖南 长沙 410128)(2. 湖南农业大学食品科技学院, 湖南 长沙 410128)

摘要:对沉淀法制取茶皂素的工艺进行了优化。结果表明沉淀反应的最佳工艺条件为:反应温度为室温、沉淀剂加入量为茶粕原料的 16%、反应时间 3 h;皂素释放液采用真空抽滤分离,滤饼用热水洗涤 1 次,释放反应最佳条件为:选用碳酸氢铵作皂素释放剂、反应温度 70 ℃、按化学平衡反应率为 50%添加碳酸氢铵量、反应时间为 2.5 h。该方法可减少茶皂素浓缩能耗,降低生产成本。

关键词: 茶皂素; 沉淀; 释放

中图分类号: TS201.2; 文献标识码: A; 文章篇号:1673-9078(2008)06-0571-04

Preparation of Theasaponin by Sedimentation

LIU Hong-mei¹, ZHOU Jian-ping², LI Hai-lin¹, GUO Hua¹

(1.Laboratory Managemental Centre of Hunan Agriculture University, Changsha 410128, China)

(2. College of Food Science and Technology of Hunan Agriculture University, Changsha 410128, China)

Abstract: Theasaponin was prepared by sedimentation in this paper. The result showed that the best deposit conditions were as follows: room temperature, 3 h and 16% of CaO. Decompounding solution was filtrated under vacuum and the filter cake was washed with hot water. For decompounding the theasaponin, the best reagent, reaction temperature and time were NH₄HCO₃, 70 °C, and 2.5 h, respectively. This method could reduce energy consumption as well as the production cost.

Key words: theasaponin; sedimentation; decompose

茶皂素(Theasaponin)是山茶科山茶属植物皂素的统称,是一类结构相近的齐墩果烷型五环三萜类皂甙的混合物,其单体称作茶皂甙、茶皂苷和皂角苷。其中油茶皂素(以下简称茶皂素)是油茶(Camellia oleifera)木本油料植物含有的一类天然糖甙化合物。有优良的表面活性和特殊的生理活性,因此可广泛应用于日化、医药、食品、建材和农药等行业[1]。1931年日本学者青山新次郎首次研究茶皂素,我国的研究始于70年代末。目前学者对浸提法的研究较多,但此法存在茶皂素产品纯度低、生产成本高和浓缩困难且能耗大的问题,致使皂素生产和应用受到限制。本研究采用沉淀-释放法,高效浓缩浸提液,可以克服茶皂素液浓缩困难的问题,且达到降低能耗,提高经济效益的目的[2~5]。

1 材料与方法

1.1 材料与仪器

油茶粕,由株洲恒源油脂有限公司提供。

SHB-III循环水式多用真空泵、JJ-1 精密增力电动

收稿日期: 2008-02-13

作者简介: 刘红梅(1979-), 女, 硕士, 助理实验师

通讯作者:周建平,教授

搅拌器、LXJ-IIB 型飞鸽低速大容量多管离心机、 BC1BD-261 新飞转换型冷藏冷冻箱、数显式电热恒温 水浴锅和 UV-2800 型紫外可见分光光度计。

1.2 方法

1.2.1 工艺流程

原料粉碎过筛→浸提→离心分离→收集液体→加入沉淀 剂 (氧化钙)→离心分离→收集滤饼→加入释放剂→真空抽滤 →收集滤液→浓缩→茶皂素

1.2.2 茶皂素的检测分析 参照文献^[2],并略加改进。

1.2.3 释放剂的选择

选择了碳酸氢铵、磷酸、醋酸、乳酸、盐酸和硫酸这几种释放剂。通过不同浓度的释放试验,结果发现硫酸浓度为30%时利于皂素释放反应,其它释放剂浓度改变对皂素释放率没有影响。因此采用30%的硫酸,而其它释放剂没有稀释。

1.2.4 释放反应后浆液分离方式的选择

选择常压过滤、真空抽滤、离心分离三种方法进 行浆液分离。通过比较分离速度、难易程度、皂素损 失率等指标来确定分离方式。

1.2.5 释放反应后浆液分离滤饼洗涤次数的选择 通过分析洗涤次数与释放增长率的关系来确定洗 涤次数。

2 结果与分析

2.1 茶皂素的沉淀

2.1.1 沉淀剂(氧化钙)用量对皂素沉淀率的影响

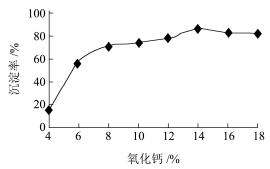


图 1 氧化钙用量对沉淀率的影响

Fig.1 Effect of calcium oxide dosage on depositing rate

从图 1 知,氧化钙加入量增多,皂素沉淀率增大, 当氧化钙加入量为 14%时,皂素钙沉淀率达到最大, 为 86.5%;此后氧化钙加入量再增多,皂素沉淀率反 而有所下降,可能是因为过多的氧化钙碱性环境使皂 素分解。

2.1.2 反应时间对皂素沉淀率的影响

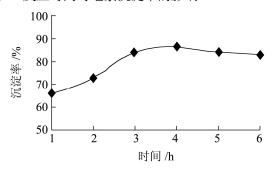


图 2 反应时间对皂素沉淀率的影响

Fig.2 Effect of reaction time on depositing rate

从图 2 知,反应时间在 3 h 前,皂素沉淀率随反应时间延长而急剧上升;从 3 h 到 4 h 间沉淀率略有上升,最高达 86.32%;但 4 h 后皂素沉淀率略有下降,可能是因为在氧化钙碱性溶液中时间过长,导致部分茶皂素分解所致。

2.1.3 反应温度对皂素沉淀率的影响

从图 3 知,反应温度为 5 ℃时皂素沉淀率最大,随着反应温度的升高,沉淀率下降,但反应温度为 5 ℃ 和 30 ℃时,沉淀率变化较小,当反应温度升至 55 ℃时,皂素沉淀率迅速下降。在一定温度范围内,低温有利于皂素沉淀,这可能是由于反应温度低,氧化钙溶解度较大,使皂素钙溶解度小。

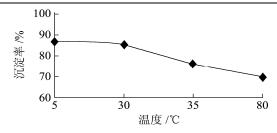


图 3 反应温度对皂素沉淀率的影响

Fig.3 Effect of reaction temperature on depositing rate

2.1.4 沉淀反应条件的优化和最佳因素水平的选择 把温度、氧化钙用量、反应时间设为正交试验的 因素,取三水平进行 L₉(3³)正交试验,结果见表 1。

表 1 沉淀反应正交试验结果

Table 1 Orthogonal test result of sedimentation reacting

试验号	A(温度/℃)	B(沉淀剂量/%)	C(时间/h)	转化率/%
1	5	12	3	85.51
2	5	14	4	85.32
3	5	16	5	86.41
4	30	12	4	84.23
5	30	14	5	83.45
6	30	16	3	86.54
7	55	12	5	80.72
8	55	14	3	83.04
9	55	16	4	83.56
K1	257.24	250.46	255.09	
K2	254.22	251.81	253.11	
K3	247.32	256.51	250.58	
k1	85.75	83.49	85.03	
k2	84.74	83.94	84.37	
k3	82.44	85.50	83.53	
R	3.31	2.01	1.50	

从表1知,影响沉淀率的因素主次为A>B>C,即反应温度对沉淀率影响最大,其次为氧化钙用量和反应时间。5 ℃时沉淀率的平均值为85.75%,略高于30 ℃时的沉淀率,但无明显的差异。若需制冷才能获得低温,从生产成本的角度考虑,选择反应温度为当时室温便可。因此,最适宜的沉淀反应条件为:温度为当日室温、氧化钙加入量为16%、反应时间为3h。

按优化条件进行验证试验, 沉淀率为 87.88%, 比正交试验的最高得率 86.54%略高, 因此确定该优化条件是可行的。

2.2 茶皂素的释放

2.2.1 释放剂种类的选择

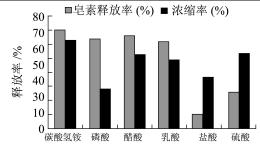


图 4 释放剂种类的选择

Fig.4 Effect of decomposing reagent on the decomposing rate

从图4知,碳酸氢铵和醋酸的释放率最高,磷酸和 乳酸其次,盐酸和硫酸的释放率较低。从浓缩率来看, 以碳酸氢铵的浓缩率最高。因此选择碳酸氢铵作皂素 释放剂,反应如下:

 $(R-sap)_2Ca + 2NH_4HCO_3 \rightarrow 2R-sapH + CaCO_3 \downarrow + 2NH_3 \uparrow + CO_2 \uparrow + H_2O$

其中R-sapH代表茶皂素分子(R=皂苷元,H=羧基氢原子)。

2.2.2 分离方式的选择

表 2 不同分离方式的比较

Table 2 Comparison of separation methods for theasaponin

分离方式	速度(min/份)	分离难易	皂素损失率/%
常压过滤	60	难	4.17
真空抽滤	15	易	2.27
离心分离	30	易	3.41

通过三种分离方式的比较,得出真空抽滤是一种 分离容易、分离速度快、皂素损失小的分离方法,且 设备简单。

2.2.3 滤饼洗涤次数的选择

表 3 洗涤次数与释放率的关系

Table 3 Effect of washing times on the decompounding rate

	转化液	1次洗液	2次洗液	3次洗液
释放增长率/%	66.15	4.59	0.66	0.07

从表3可看出,第1次热水洗涤能洗出部份饼渣吸附的游离皂素,第2次及以后洗涤时仅有极少量皂素被洗出,另外,洗涤次数增加洗出的杂质也增多,且液体量增加,给后续浓缩和纯化工序带来困难,因此,洗涤1次即可。

2.2.4 温度对释放率的影响

从图 5 知,当温度从 40 ℃升至 70 ℃时,随着温度升高皂素释放率提高,70 ℃以后释放率趋向平稳。适当提高温度有利于释放反应,但温度过高能源消耗增加,所以必须选择合适的反应温度。

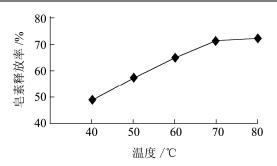


图 5 温度对皂素释放率的影响

Fig.5 Effect of temperature on decompounding rate

2.2.5 时间对释放率的影响

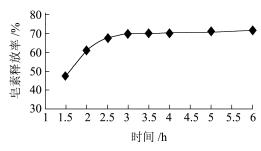


图 6 反应时间对皂素释放率的影响

Fig.6 Effect of reaction time on decompounding rate

从图 6 知,在 3 h以内随着反应时间的延长,皂素释放率增加,3 h后,继续延长时间对增加茶皂素的量没有价值。

2.2.6 释放剂加入量对释放率的影响

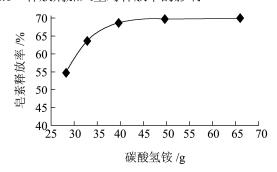


图 7 释放剂加入量对释放率的影响

Fig.7 Effect of NH₄HCO₃ dosage on decompounding rate

从图 7 可看出,碳酸氢铵加入量小于 39.5 g(即按化学平衡反应率 50%的量加入)时,随着碳酸氢铵加入量的增多,皂素释放率提高,当加入量超过 39.5 g时,释放率达到最高为 68.69%,以后再增加碳酸氢铵量,释放率不再有明显的提高。

2.2.7 释放反应条件的优化和最佳因素水平的选择

本试验把温度、释放剂的加入量、反应时间设为正交试验的因素,取三水平进行 $L_9(3^3)$ 正交试验,结果见表 4,分析见表 5。

表 4 释放反应正交试验结果

Table 4 Result of orthogonal test of Theasaponine decompounding

	u	ecompounding		
试验号	A/(温度/℃)	B/(释放剂/g)	C/(时间/h)	转化率/%
1	60	32.92	2.5	63.42
2	60	39.5	3	63.81
3	60	49.38	3.5	62.63
4	70	32.92	3	70.36
5	70	39.5	3.5	71.24
6	70	49.38	2.5	69.48
7	80	32.92	3.5	68.51
8	80	39.5	2.5	70.68
9	80	49.38	3	63.98
K 1	189.86	202.29	203.58	
K2	211.08	205.73	198.15	
K3	203.17	196.09	202.38	
k1	63.29	67.43	67.86	
k2	70.36	68.58	66.05	
k3	67.72	65.36	67.46	
R	7.07	3.22	1.81	

表 5 正交试验方差分析表

Table 5 Variance analysis of orthogonal test

变异来源	自由度	F值	概率	临界值	显著性
温度A	2	17.79	0.0532	F0.05(2,2)=19	-
释放剂量B	2	3.69	0.2131	F0.01(2,2)=99	-
时间 C	2	1.26	0.4427		-
误差	2				
总和	8				

从表 5 知温度、释放剂量和时间三因素都没有达到 5%的显著水平。这表明,释放反应对条件要求不严格。但从降低生产成本及尽可能提高释放率考虑,还是应该选用最佳的释放反应条件。从本正交试验结果来看,以 $A_2B_2C_1$ 为最佳条件组合,即反应温度 $70 \, \mathbb{C}$ 、碳酸氢铵加入量 $39.5 \, \mathrm{g}$ (也即按化学平衡反应

率 50%的量加入)、反应时间 2.5 h。但本正交试验释放率最高为 71.24%,是 5 号处理组合,即 $A_2B_2C_3$,反应时间为 3.5 h。因为试验的三因素均差异不显著,而反应时间又是影响最小的,故反应时间长短不会造成释放率多大影响,而缩短反应时间可以降低生产成本,况且从整个试验看,也是 C_1 (反应时间 2.5 h) 释放率略高于 C_3 ,为此,应该说 $A_2B_2C_1$ 是最佳的释放条件组合。

按优化条件进行验证试验,释放率为71.36%,比正交试验最高释放率71.24%略高,因此确定该优化条件是可行的。

3 小结

氧化钙是良好的皂素沉淀剂,同时还有澄清工艺水的作用,有利于皂素生产工艺水循环利用。笔者还作了饱和石灰水洗皂素钙混合物试验,但除杂的同时洗去附着的游离皂素,导致皂素损失约 5.71%。

目前工业化生产茶皂素成本高、纯度低,制约了茶皂素提取及产品开发。本工艺可将皂素液体浓缩到原提取液的 1/3 左右,可解决茶皂素浓缩因难,浓缩能耗大的问题,降低了生产成本。因此,该方法在茶皂素提取工艺中有一定的实际应用价值。

参考文献

- [1] 刘红梅,周建平,郭华,等.油茶皂素提取纯化及含量检测研究 综述..现代食品科技,2006,22(4):265-268
- [2] 屈妹存,唐明远.油茶皂角苷的纯化与含量测定.湖南农业大学学报,1999,25(3):257-259
- [3] 童吉灶,祝赞发,俞兴丰.Ca²⁺、Ba²⁺离子茶皂素配合物的制备.江西师范大学学报,2004,8(4):361-363
- [4] 杨坤国,黄明泉.茶皂素提取与精制方法的改进研究.林产 化学与工业,2001,21(2):44-48
- [5] 谢子汝.新法提取茶皂素的工艺研究.日用化学工业,1994, 14(9):24-25