中性蛋白酶水解荞麦蛋白的研究

田斌, 董文宾, 朱振宝

(陕西科技大学, 陕西 西安 710021)

摘要:以水解度为主要指标,研究了中性蛋白酶对荞麦蛋白的水解作用。试验结果表明,最佳的酶解条件为: 加酶量 5000 U/g,底物质量浓度 40 g/L,温度 50 ℃,pH7.5,酶解时间 2 h。在此酶解条件下,荞麦蛋白水解度达到 42.31%。

关键词: 荞麦蛋白; 蛋白酶; 水解

中图分类号: TQ464.8; 文献标识码: A; 文章篇号:1673-9078(2008)01-0067-03

Hydrolysis of the Buckwheat Protein by Neutral Protease

TIAN Bin, DONG Wen-bin, ZHU Zhen-Bao

(Shaanxi University of Science and Technology, Xi'an 710021, China)

Abstract: Hydrolysis of the buckwheat protein by neutral protease was studied in this paper. The result showed that the optimum enzyme doses, substrate concentration, temperature, pH and reaction time were 5000 U/g, 4%, 50 °C, 7.5 and 2 h, respectively. Under those optimized conditions, the hydrolytic degree of buckwheat protein reached 42.31%.

Key words: buckwheat protease; hydrolysis

荞麦又名玉麦、乌麦、花荞、三角麦, 有甜荞和 苦荞之分,粘荞与糯荞之别,属于蓼科荞麦属双子叶 植物[1]。荞麦具有较高的营养价值和药用价值,对治 疗心血管病、糖尿病、高血压及肥胖症等疗效显著, 是集营养、保健、医疗为一体的天然绿色健康食品之 一。荞麦营养丰富,人体所必需的氨基酸齐全且配比 适当,蛋白质质量浓度达 110~150 g/L^[2]。目前国内外 对荞麦蛋白质的利用主要是将其作为产品的配料,以 改善食品的组织结构和增加营养保健价值。由于植物 蛋白的结构大都十分紧密, 分子量较大, 不易被人体 消化吸收, 吸收率也往往低于动物蛋白。将植物蛋白 水解后,分子量减少,结构疏松,便于人体内酶的作 用,可以使吸收率大大提高[3]。通过酶法水解荞麦蛋 白可以提高荞麦蛋白的营养效价,以便更好的利用荞 麦蛋白。本文主要利用了中性蛋白酶水解荞麦蛋白, 研究了其水解的最适作用条件。

1 材料与方法

1.1 材料与试剂

陕北甜荞粉、荞麦蛋白制品,实验室自制;中性蛋白酶,无锡市酶制剂厂;其余常用试剂均为分析纯。 1.2 主要试验仪器

收稿日期: 2007-09-17

作者简介:田斌(1980-),女,在读硕士研究生,研究方向:食品新材料制备及其检测技术

LYO-1 型冻干机,上海东富龙科技有限公司; KNC-08C 凯氏定氮仪,上海洪纪仪器厂; LG1.0-2.4A 型离心机,北京医用离心机厂。

1.3 试验方法

- 1.3.1 粗蛋白含量的测定: 凯氏定氮法^[4]。
- 1.3.2 氨基氮的测定: 甲醛滴定法^[5]。
- 1.3.3 水解度的测定

水解后生成的氨基氮的量由 1.3.2 法测得,样品总 氮量由 1.3.1 法测定。

水解度 $^{[0]}$ (DH)=水解后生成的氨基氮的量/样品总含氮量 $\times 100\%$

2 结果与讨论

2.1 单因素试验

2.1.1 加酶量对蛋白质水解度的影响

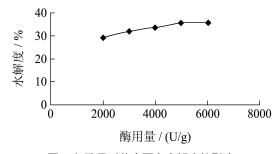


图 1 加酶量对荞麦蛋白水解度的影响

在底物浓度 S=30 g/L、温度 45 \mathbb{C} 、pH=7.0、酶解时间为 2 h 的条件下试验不同的加酶量对蛋白质水

解度的影响。结果如图 1 所示,在其他条件不变的情 况下,随着加酶量的增加,DH 值随之提高,当加酶 量为 5000 U/g 时,再增加酶量, DH 值增加趋势变缓。

2.1.2 底物浓度对蛋白质水解度的影响

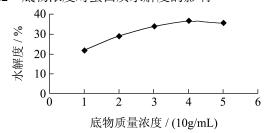


图 2 底物浓度对荞麦蛋白水解度的影响

在反应温度 45 ℃, pH=7.0, 加酶量为 4000 U/g, 酶解时间为2h的条件下试验不同的底物浓度对蛋白 质水解度的影响。结果如图 2 所示,在其他条件不变 的情况下,随着底物浓度的增加,DH 值逐渐增大; 当底物质量浓度大于 40 g/L 时, DH 值增加不明显且 有下降的趋势。

2.1.3 温度对蛋白质水解度的影响

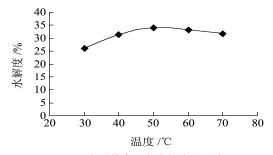


图 3 温度对荞麦蛋白水解度的影响

在底物 S=30 g/L, pH=7.0, 加酶量为 4000 U/g, 酶解时间为2h的条件下试验不同的酶解温度对蛋白 质水解度的影响。结果如图 3 所示,在其他条件不变 的情况下,酶解温度不同,DH 值不同。当酶解温度 为50℃时,水解度最大。

2.1.4 时间对蛋白质水解度的影响

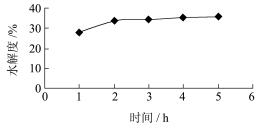


图 4 时间对荞麦蛋白水解度的影响

在底物 S=30 g/L, 温度 45 ℃, pH=7.0, 加酶量 为4000 U/g的条件下试验不同的酶解时间对蛋白质水

解度的影响。结果如图 4 所示,在其他条件不变的情 况下,随着酶解时间的延长,DH 值也随之提高,当 酶解时间达到 2 h 时, DH 值增加趋势变缓。

2.1.5 pH 值对蛋白质水解度的影响

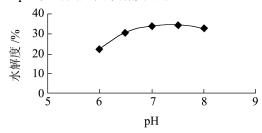


图 5 pH 对荞麦蛋白水解度的影响

在底物浓度 S=30 g/L, 温度 45 ℃, 加酶量为 4000 U/g, 酶解时间为2h的条件下试验不同的pH对蛋白 质水解度的影响。结果如图 5 所示, pH 在 7.0~7.5 时 DH 值较高。

2.2 正交试验

以水解度为指标,采用 L₉(3⁴)正交试验确定中性 蛋白酶水解荞麦蛋白的最佳反应条件。根据单因素试 验结果,选择的正交试验因素水平表见表 1。

表 1 试验因素水平表

水平	A(加酶量/(U/g)	B(温度/℃)	C(pH)	D(底物, 10 g/L)
1	4000	45	6.5	3
2	5000	50	7.0	4
3	6000	55	7.5	5

表 2 正交试验结果

衣 2 正文风驰结未								
序号	A	В	С	D	DH/%			
1	1(4000)	1(45 °C)	1(6.5)	1(3)	30.90			
2	1	2(50 °C)	2(7.0)	2(4)	36.16			
3	1	3(55 ℃)	3(7.5)	3(5)	35.71			
4	2(5000)	1	2	3	37.84			
5	2	2	3	1	40.17			
6	2	3	1	2	28.65			
7	3(6000)	1	3	2	38.80			
8	3	2	1	3	31.83			
9	3	3	2	1	32.36			
k1	34.26	35.85	30.46	34.48				
k2	35.55	36.05	35.45	34.54				
k3	34.33	32.24	38.23	35.13				
R	1.29	3.81	7.77	0.65				
优化组合	A_2	\mathbf{B}_2	C_3	D_2				

(下转第75页)