加速溶剂萃取/凝胶渗透色谱净化/气相色谱-三重四 极杆质谱测定水产品中的持久性有机污染物

荣茂,余婷婷,靳海斌,李珉,江丰,朱晓玲,刘迪,张莉

(湖北省食品质量安全监督检验研究院,湖北省食品质量安全检测工程技术研究中心,湖北武汉 430000) 摘要:建立了一种加速溶剂萃取/凝胶渗透色谱净化/气相色谱三重四极杆质谱同时检测水产品中 46 种典型持久性有机污染物的 方法。水产样品经-105 ℃、100 mbar 条件下的冷冻干燥处理后,加入硅藻土混合碾磨均匀后,经加速溶剂萃取、凝胶渗透色谱净化, 使用萘-d、芴-d、蒽-d、菌-d 作为内标,采用气相色谱三重四极杆质谱的多反应监测模式对水产品中的 16 种多环芳烃、30 种有机氯 农药进行定性定量分析。在 100 ℃、1500 psi 条件下以二氯甲烷: 己烷 (1:1, *V/V*) 对 46 种有机污染物进行萃取,收集凝胶渗透色谱 中 7.5~16 min 馏出液,浓缩定容上机分析。46 种持久性有机污染物分离效果良好,相关系数*R*²均在 0.99 以上,低(10 µg/kg)、中(50 µg/kg)、 高(100 µg/kg)3 个水平的加标回收率均在 81.0%~121.0%之间,相对标准偏差 (RSD, n=6)在 4.1%~11.0%之间,方法检出限为 0.0185 µg/kg~0.7377 µg/kg (干重)。该方法采用加速溶剂萃取仪和凝胶渗透色谱仪进行前处理,可实现前处理无人值守,大大提升检验效率, 且方法稳定性好,灵敏度和回收率高,是分析水产品中痕量持久性有机污染物的较好方法。

关键词:水产品;持久性有机污染物;气相色谱-三重四极杆质谱;加速溶剂萃取;凝胶渗透色谱 文章篇号:1673-9078(2020)04-304-315 DOI: 10.13982/j.mfst.1673-9078.2020.4.040

Determination of Persistent Organic Pollutants (POPs) in Aquatic

Products by Accelerated Solvent Extraction/Gel Permeation

Chromatography/Gas Chromatography-tandem Mass Spectrometry

RONG Mao, YU Ting-ting, JING Hai-bin, LI Min, JIANG Feng, ZHU Xiao-ling, LIU Di, ZHANG Li

(Hubei Provincial Institute for Food Supervision, Hubei Provincial Engineering and Technology Research Center for Food Quality and Safety Test, Wuhan 430000, China)

Abstract: An improved method based on accelerated solvent extraction/gel chromatography purification/gas chromatography-triplequadrupole mass spectrometry was set up to detect 46 POPs in aquatic products. The aquatic products were freeze-dried at -105 °C and 100 mbar and then uniformly mixed with diatomaceous earth. The accelerated solvent extraction and gel chromatography purification were used to remove grease. The quantitation and qualification analysis of 16 kinds of polycyclic aromatic hydrocarbons and 30 kinds of organochlorines were performed by gas chromatography-triple-quadrupole mass spectrometry (GCMS/MS) in the multiple reaction monitoring (MRM) mode, using Naphthalene-d, Acenaphthene-d, Anthracene-d, Chrysene-d as internal standards. 46 organic contaminants were extracted with dichloromethane:hexane (1:1, V/V) at 100 °C and 1500 psi, and their distillate (7.5~16 min) was collected. The separation

引文格式:

荣茂,余婷婷,靳海斌,等.加速溶剂萃取/凝胶渗透色谱净化/气相色谱-三重四极杆质谱测定水产品中的持久性有机污染物[J].现代食品科技,2020,36(4):304-315

RONG Mao, YU Ting-ting, JING Hai-bin, et al. Determination of persistent organic pollutants (POPs) in aquatic products by accelerated solvent extraction/gel permeation chromatography/gas chromatography-tandem mass spectrometry [J]. Modern Food Science and Technology, 2020, 36(4): 304-315

收稿日期: 2019-10-25

基金项目:国家重点研发计划项目(2018YFC1602302、2018YFC1602303);湖北省自然科学基金项目(2018CFB339),湖北省食品药品监督管理局科研项目(201602005) 作者简介: 荣茂(1989-),男,助理工程师,研究方向:食品加工与安全

通讯作者:余婷婷(1985-),女,博士,工程师,研究方向:食品安全检测与质谱分析

现代食品科技

Modern Food Science and Technology

2020, Vol.36, No.4

of 46 POPs was good, and the correlation coefficient R^2 was above 0.99. The recoveries of low (10 µg/kg), medium (50 µg/kg) and high (100 µg/kg) levels were between 81.0% and 121.0%, the relative standard deviations (RSD, n=6) were between 4.1% and 11.0%, and the detection limit was 0.0185 µg/kg~0.7377 µg/kg (dry weight). This method, with accelerated solvent extraction and gel chromatography purification as pretreatments, has good stability, low detection limit, and a high recovery rate. It is a promising method for analyzing trace POPs in aquatic products.

Key words: aquatic products; POPs; gas chromatography-triple-quadrupole mass spectrometry; accelerated solvent extraction; gel permeation chromatography

持久性有机污染物(persistent organic pollutants, POPs) 是指具有生物蓄积性、长期残留性、不易分解 和高毒性,能够通过各种环境介质进行长距离迁移, 并且会对人类健康和环境产生严重危害,天然或人工 合成的有机污染物。多环芳烃(Polycyclic Aromatic Hydrocarbons, PAHs) 和有机氯农药(Organochlorine pesticides, OCPs) 是两类典型的 POPs, 早在 1976 年 国际癌症研究中心(IARC)便将以苯并[α]芘为代表 的多种多环芳烃列为高强度致癌物质[1],而农业生产 过程中为了防治植物病和虫害也会施加各类 OCPs。 自上世纪 70 年代起,全球举措消控 POPs,中国也开 始针对 POPs 采取了多项措施以保护环境和维护民众 健康^[2], 然而鉴于 POPs 的稳定性及其迁移特性, 近几 年的文献报道在我国水生环境介质内仍残留有大量的 OCPs、PAHs 等典型的 POPs^[3],且在鱼、虾、蟹、贝 类等水产中检出^[4]。

POPs 具有致癌、致畸和致突变效应,人体长期低 剂量的接触虽不会导致明显的急性毒效应,但会引起 内分泌和免疫系统的慢性损伤。长期食用遭受 POPs 污染的动物源食品,同样存在因为蓄积风险而造成人 体健康危害。水产品具有高蛋白低脂肪、营养丰富的 特点。近年来,随着人们健康意识的提高和消费观念 的改变,我国动物性食物消费模式正呈现出以畜禽肉 类为主向以鱼虾类水产品为主的转变,水产品质量安 全在城乡居民食品安全消费中的重要性日益凸显^[5]。 因此,对水产品中 PAHs 和 OCPs 的监控检测具有重 要的现实意义。目前, PAHs 和 OCPs 的检测方法主要 有气相色谱法[6,7]、气相色谱质谱法[8]、气相色谱串联 质谱法^[9,10]、液相色谱法^[11,12]、液相色谱质谱法^[13]等, 但对水产品中 PAHs 和 OCPs 的检测方法报道的较少, 水产品中大量的脂肪和水分,对检测前处理造成较大 的困扰,在脂肪中提取极性较弱的目标物时,往往会 出现回收率较低、基质效应显著、灵敏度差等问题, 同时前处理繁杂占用大量人工,前处理需时长,因此, 建立一种同时快速测定水产中 PAHs 和 OCPs 的方法 具有重要的应用价值。

水产品样品通常含有较高水平的水分、脂肪、蛋

白质等物质,在分析水产品中污染物的过程中会着重 选择方案去除这几类物质,目前已报道较好的解决方 法有固相萃取技术、QuEChERS、液液微萃取(LLME) 技术等,如 Shrivas K 等^[14]以超声波辅助萃取鱼肉样 品中的多种有机氯,然后再通过单滴微萃取技术进行 浓缩,使得对鱼肉中OCPs提取回收率在82.1%~95.3% 之间; Ankita A 等^[15]利用超声辅助分散再以液液微萃 取技术提取鱼肝油中的多种有机氯化合物,以微萃取 技术降低鱼肝油基质带来的基质效应,最低检出限为 1.06 ng/g, 回收率范围为 88.5%~108.4%; 王伟等^[16] 通过固相分散-快速溶剂萃取来提取土壤中的有机氯 农药和多环芳烃物质,该方法对土壤中的 POPs 提取 效率良好,标准偏差值小于 20%,回收率在 60.6%到 125%之间;李冰等[17]通过正己烷/二氯甲烷混合液辅 以超声波直接提取鱼肉中的多环芳烃,再用佛罗里硅 藻土对提取液进行净化后采用 GC-MS/MS 进行定量 分析,方法线性范围为0.4 µg/kg~50 µg/kg,回收率在 68.5%~106.3%,相关系数为0.9865~0.9999;李晓贝等 ^[18]通过表面活性剂结合 OuEChERS 来对大豆油中多 种有机氯农药和多环芳烃进行了检测,方法基于改性 表面活性剂来对油脂进行净化,同时结合 QuEChERS 达到去除其他小分子杂质的效果,方法回收率良好, OCPs 回收率为 64.35%~120.63%, PAHs 回收率为 74.05%~101.52%。然而,用于水产品中 POPs 的效率 高、稳定性好、回收率高、检出限低检测方法仍未见 报道,因此本文提出一种通过加速溶剂萃取-凝胶色谱 净化结合气相色谱三重四极杆对水产品中 POPs 的检 测方法,该方法能更有效的去除水产品基质中的水分、 脂肪、蛋白质等杂质,同时可实现全自动无人值守来 进行前处理,大大减轻检测人员负担,为分析研究监 测水产品各类持久性污染物提供可靠的实验依据。

1 材料与方法

1.1 仪器与试剂

气相色谱-三重四极杆质谱仪,美国 Thermo 公司; MS205DU 电子天平,梅特勒-托利多; VirTis

BTP-8ZL00X 冻干机,美国 SP Scientific 公司; E-914 加速溶剂萃取仪,瑞士 Buchi 公司; 全自动凝胶净化 系统 (GPC),德国 LCTech 公司; HEI-VAP/LR20 旋 转蒸发仪,德国 Heidolph GmbH 公司; N-EVAP 116 氮吹仪,美国 Organomation 公司。

环己烷(色谱纯), Merck 公司;乙酸乙酯(色谱 纯), Merck 公司; 硅藻土(分析纯),国药集团;中 性氧化铝(100~200 目), Macklin; 16 种 PAHs 混合 标准溶液,美国 o2si 公司;同位素内标,美国 o2si 公司;有机氯标准溶液,农业部环境保护科研监测所。

1.2 标准溶液的配制

16 种 PAHs 浓度均为 100 μg/mL(包括萘、苊烯、 苊、芴、菲、蒽、荧蒽、芘、苯并[a]蒽、䓛、苯并[b] 荧蒽、苯并[k]荧蒽、苯并[a]芘、茚并[1,2,3-c,d]芘、二 苯并[a,h]蒽、苯并[g,h,i]芘),取每种标准品物质 1 mL 用丙酮定容至 100 mL 作为储备液备用,储备液浓度 为 1 μg/mL。

30种 OCPs 浓度均为 100 μg/mL(包括 α-六六六、 β-六六六、γ-六六六、δ-六六六、六氯苯、五氯硝基苯、 五氯苯胺、七氯、五氯苯基硫醚、三氯杀螨醇、艾氏 剂、环氧七氯、氧氯丹、顺-氯丹、o,p'-滴滴伊、α-硫 丹、反-氯丹、顺-九氯、反-九氯、狄氏剂、p,p'-滴滴 伊、p,p'-滴滴伊、异狄氏剂、β-硫丹、异狄氏剂醛、 p,p'-滴滴滴、o,p'-滴滴涕、硫丹硫酸盐、p,p'-滴滴涕、 异狄氏剂酮、灭蚁灵),取每种标准品物质 1 mL 用 丙酮定容至 100 mL 作为储备液备用,储备液浓度为 1 µg/mL∘

4 种混合同位素内标浓度为 100 μg/mL(包括萘 -d、芴-d、蒽-d、菌-d),取混合标准溶液 1 mL,用 丙酮溶液定容至 10 mL 得同位素内标储备液,冷藏备 用。

标准曲线的配制:分别取两种 POPs 储备液各 50 μL、100 μL、500 μL、1 mL、1.5 mL、2.0 mL,用丙 酮定容至 10 mL 得 5 ng/mL、10 ng/mL、50 ng/mL、 100 ng/mL、150 ng/mL、200 ng/mL 标准曲线,同时各 加入 10 μg/mL 的同位素内标溶液 20 μL。

1.3 仪器条件

1.3.1 冷冻干燥条件

1.3.4 GC-MS/MS 条件

冷冻盘温度: -105 ℃; 冷冻室压力: 100 mbar; 冷冻干燥时间: 24 h。

1.3.2 快速溶剂萃取仪(ASE)条件

提取溶剂: 二氯甲烷/正己烷 (1:1, *V/V*); 萃取 池体积: 80 mL; 系统压强: 1500 psi; 萃取温度: 100 ℃; 静态萃取时间: 10 min; 溶剂冲刷时间: 2 min; 氮气 冲刷时间: 3 min; 循环次数: 2 次。

1.3.3 凝胶色谱净化仪(GPC)条件

GPC 色谱柱: 40010 型 (300 mm×20 mm,高24 cm,24 g Bio-Beads SX-2 填料); 流动相:环己烷/乙酸乙酯 (1:1, *V/V*); 流速: 4.5 mL/min; 定量环: 5.0 mL; 前运行时间: (0~7.5) min; 收集流出液时间: (7.5~16) min; 清洗时间: (16~18) min。

	Table 1 MS/MS parameters for 40 POrs										
			保留时 - 间/min	定	量离子对,	/(<i>m/z</i>)	定	生离子对/	(<i>m/z</i>)		
编号	化合物	英文名称		母离	子离	碰撞能	母离	子离	碰撞能		
				子	子	量eV	子	子	量eV		
1	萘-d	d-Naphthalene	6.24	136.2	108.1	20	136.2	134.1	20		
2	茶	Naphthalene	6.25	128.0	102.1	20	138.0	125.0	15		
3	苊烯	Acenaphthylene	8.16	152.0	126.0	25	152.0	151.1	15		
4	芴-d	d-Acenaphthene	8.33	158.1	156.0	20	160.2	158.1	20		
5	苊	Acenaphthene	8.37	154.0	153.1	20	153.0	152.2	20		
6	α-六六六	a-benzenehexachloride(a-HCH)	8.53	182.8	146.7	12	218.8	183.0	8		
7	芴	Fluorene	8.91	166.0	165.0	15	126.0	113.0	10		
8	β -六六六	β -benzenehexachloride(β -HCH)	9.51	180.9	145.0	14	218.7	183.0	8		
9	y-六六六	γ -benzenehexachloride(γ -HCH)	9.74	180.9	109.0	18	180.9	145.0	14		
10	六氯苯	Hexachlorobenzene(HCB)	9.76	283.8	248.8	18	285.8	250.8	18		
11	δ -六六六	δ -benzenehexachloride(δ -HCH)	9.93	218.8	146.5	20	182.9	146.7	14		
12	五氯硝基苯	Pentachloronitrobenzene(PCNB)	10.08	295.0	236.9	20	237.0	236.2	18		

表 1 46 种 POPs 的出峰时间及监测离子对 Table 1 MS/MS parameters for 46 POPs

转下页

现代食品	品科技	Modern Fo	2020, Vol.36, No.4						
接上页									
13	蒽-d	d-Anthracene	10.11	160.2	158.2	20	188.2	160.0	30
14	菲	Phenanthrene	10.16	178.0	176.0	25	139.0	125.9	10
15	蔥	Anthracene	10.24	178.0	176.1	25	153.0	126.6	25
16	五氯苯胺	Pentachloroaniline(PCA)	10.67	265.0	193.8	22	230.0	192.0	28
17	七氯	Heptachlor(HEPT)	11.24	99.8	65.0	12	217.8	236.9	12
18	五氯苯基硫醚	Pentachlorophenyl sulfide(PCPs)	11.62	296.0	262.8	6	298.0	264.8	12
19	三氯杀螨醇	Dicofol	11.85	139.0	111.0	10	111.0	75.0	10
20	艾氏剂	Aldrin(ALD)	11.92	262.7	192.9	32	262.7	191.0	30
21	荧蒽	Fluoranthene	12.63	200.0	199.1	30	200.0	198.0	20
22	环氧七氯	Heptachlor epoxide(HCE)	12.62	353.0	262.9	20	353.0	281.9	20
23	氧氯丹	oxy-Chlordane	12.71	115.0	87.0	10	185.0	149.0	10
24	顺-氯丹	cis-Chlordane	13.12	372.8	266.1	20	374.7	265.8	30
25	芘	Pyrene	13.16	202.0	200.0	35	138.0	137.2	15
26	o,p′-滴滴伊	o,p´-DDE	13.30	246.0	176.0	28	318.0	246.0	20
27	α-硫丹	α-endosulfan	13.42	240.6	205.9	14	194.7	125.0	22
28	反-氯丹	trans-Chlordane	13.51	372.7	265.9	30	374.7	268.0	10
29	顺-九氯	cis-Nonachlor	13.73	407.0	263.1	30	409.0	300.0	30
30	反-九氯	trans-Nonachlor	13.73	407.0	108.9	20	407.0	405.9	10
31	狄氏剂	Dieldrin(DIE)	14.02	277.0	205.3	28	277.0	240.9	32
32	p,p′-滴滴伊	p,p´-DDE	14.07	246.0	176.0	28	317.8	246.0	20
33	异狄氏剂	Endrin	14.46	262.8	192.9	30	280.8	245.3	8
34	β -硫丹	β -endosulfan	14.55	240.6	205.8	12	194.7	159.0	8
35	异狄氏剂醛	Endrin aldehyde	14.94	173.0	137.9	20	250.0	248.3	36
36	p,p′-滴滴滴	p,p´-DDD	15.00	235.0	165.1	20	235.0	199.0	14
37	o,p′-滴滴涕	o,p´-DDT	15.20	235.0	165.1	22	235.0	199.5	10
38	硫丹硫酸盐	Endosulfan sulfate	15.61	387.0	289.1	6	272.0	236.9	16
39	p,p'-滴滴涕	p,p´-DDT	16.11	235.0	165.1	22	235.0	199.5	10
40	异狄氏剂酮	Endrin ketone	16.70	317.0	280.9	6	315.0	100.9	20
41	苯并[a]蔥	Benz[a]anthracene	17.18	228.0	226.0	40	226.0	224.0	40
42	䓛-d	d-Chrysene	17.20	120.1	106.0	10	240.2	236.2	30
43	崫	Chrysene	17.28	228.0	226.0	45	228.0	227.0	40
44	灭蚁灵	Mirex	18.92	273.8	238.8	14	272.0	236.8	14
45	苯并[b]荧蒽	Benzo[b]fluoranthene	21.22	252.0	250.0	40	252.0	251.0	45
46	苯并[k]荧蒽	Benzo[k]fluoranthene	21.31	252.0	250.0	45	252.0	251.0	45
47	苯并[a]芘	Benzo[a]pyrene	22.24	252.0	250.1	30	252.0	251.1	30
48	茚并[1,2,3-c,d] 芘	Indeno[1,2,3-c,d]pyrene	26.11	276.0	274.0	30	276.0	274.9	20
49	二苯并[a,h]蒽	Dibenz[a,h]anthracene	26.30	276.0	274.0	50	276.0	275.2	35
50	苯并[g,h,i]芘	Benzo[g,h,i]perylene	26.80	277.0	275.2	20	277.0	276.1	35

色谱条件: 色谱柱: DB-1 (30 m×0.25 μm×0.32 mm); 进样口温度: 280 ℃; 进样量: 1 μL; 载气流 速 (高纯氦气): 1.2 mL/min; 进样方式: 不分流进样; 程序升温: 40 ℃/min 保持 1.2 min, 再以 25 ℃/min 的

速率升温至 90 ℃并保持 1.5 min, 以 25 ℃/min 的速率 升温至 180 ℃,以 5 ℃/min 的速率升温至 280 ℃,以 10 ℃/min 的速率升温至 300 ℃保持 6 min。

质谱条件:离子源温度:300 ℃;四级杆温度:

Modern Food Science and Technology

2020, Vol.36, No.4

1.4 实验步骤

取水产样品可食部分切块,常温下将样品匀浆制 成糜状,在-40 ℃下进行预冷冻 24 h,冻干机除去水

分后,用碾钵制成均匀粉末,于干燥处贮存备用。称 取1.00g试样粉末与1.5g硅藻土混合均匀,加入20µL 的 10 µg/mL 的内标,静置 15 min 至内标在粉末样品 中完全分散。将50g中性氧化铝(中性氧化铝应预先 置于 450 ℃马弗炉中处理至少 4 h)、2 g 硅藻土、1 g 左右样品、适量石英砂(填满萃取池)顺序填入80mL 的 ASE 萃取池中, 经 1.3.1 实验条件加速萃取后, 淋 洗液经旋转蒸发仪浓缩至近干。在避光条件下,加入 环己烷/乙酸乙酯(1:1, V/V)溶液定容至10mL,涡 旋震荡 2 min, 提取液用 0.22 µm 有机滤膜过滤后按照 1.3.2 的实验条件经 GPC 净化,流出洗脱液浓缩定容 到1mL 左右待分析。

结果与讨论 2

2.1 ASE 条件优化

Table 2 Recoveries of POPs with the extraction cycles from one to three in accelerate solvent extraction									
位日	h 14		循环次数		位日	h 14		循环次数	
编亏	名称 -	1次	2次	3次	编亏	名称 —	1次	2次	3次
2	茶	53.1%	96.6%	99.6%	27	α-硫丹	71.1%	86.7%	93.0%
3	苊烯	45.4%	101.3%	127.3%	28	反-氯丹	77.8%	88.7%	100.5%
5	苊	24.3%	59.7%	99.1%	29	顺-九氯	80.8%	103.4%	96.1%
6	α-六六六	18.8%	101.0%	37.1%	30	反-九氯	61.2%	95.5%	93.3%
7	芴	30.3%	100.0%	82.4%	31	狄氏剂	65.5%	91.7%	96.7%
8	β -六六六	29.8%	93.2%	97.9%	32	p,p′-滴滴伊	101.0%	90.8%	132.2%
9	y-六六六	78.7%	85.2%	92.9%	33	异狄氏剂	62.2%	87.0%	91.5%
10	六氯苯	25.9%	85.6%	101.8%	34	β -硫丹	49.4%	73.6%	52.5%
11	δ -六六六	11.7%	70.3%	94.1%	35	异狄氏剂醛	47.3%	106.2%	106.7%
12	五氯硝基苯	61.5%	80.0%	99.2%	36	p,p′-滴滴滴	33.0%	74.0%	51.9%
14	菲	26.9%	100.5%	108.9%	37	o,p′-滴滴涕	50.8%	94.2%	90.5%
15	蔥	30.3%	98.4%	101.4%	38	硫丹硫酸盐	86.4%	95.1%	93.1%
16	五氯苯胺	69.6%	70.6%	100.6%	39	p,p'-滴滴涕	76.6%	87.2%	97.2%
17	七氯	57.2%	77.1%	101.6%	40	异狄氏剂酮	77.5%	91.8%	96.4%
18	五氯苯基硫醚	60.3%	72.2%	98.3%	41	苯并[a]蔥	72.5%	80.8%	104.6%
19	三氯杀螨醇	60.4%	67.0%	105.4%	43	䓛	135.3%	78.1%	99.7%
20	艾氏剂	63.1%	72.5%	104.1%	44	灭蚁灵	71.2%	73.9%	98.3%
21	荧蔥	70.0%	111.4%	97.7%	45	苯并[b]荧蒽	74.9%	80.6%	99.9%
22	环氧七氯	73.3%	81.2%	95.8%	46	苯并[k]荧蒽	76.8%	74.7%	97.1%
23	氧氯丹	57.4%	70.0%	98.2%	47	苯并[a]芘	69.1%	68.9%	91.7%
24	顺-氯丹	68.7%	86.3%	101.4%	48	茚并[1,2,3-c,d]芘	76.4%	83.3%	102.8%
25	芘	94.4%	117.3%	130.8%	49	二苯并[a,h]蔥	84.3%	92.9%	107.3%
26	o,p′-滴滴伊	90.5%	93.8%	111.9%	50	苯并[g,h,i]芘	89.6%	98.1%	124.1%

表 2 循环次数对 POPs 回收率的影响

[able	2 F	Recover	ies o	f PO	Ps	with	the	extra	oction	cycle	s from	one t	to thi	ree in	acce	lerate	solv	ent	extra	ction

对于提取过程 ASE 来说,影响因素主要有:提取 时系统的温度、压力、提取的时间、以及提取完全时 所需要的提取循环次数、提取溶剂的种类及比例等。 本研究中 ASE 萃取条件的优化主要参考美国标准方 法 EPA-3545A^[19],选用二氯甲烷/正己烷(1:1,*V/V*) 作为提取溶剂,在萃取压力为 1500 psi、萃取温度为 100 ℃、静态萃取时间为 10 min 的条件下优化了循环 次数。为保证准确性和精密度,每个条件的优化都进 行了 3 个平行样样品和 1 个空白样品的分析。萃取循 环为1次时,目标物的回收率在45.0%~101.0%之间, 萃取循环2次时,回收率在63.8%~111.4%之间回收率 有较大提升,而当萃取循环次数增加至3次时,目标 化合物回收率无明显变化。综合考虑目标化合物的回 收率、萃取试剂的使用量和实验效率,本研究选取2 次循环作为最优萃取循环次数。

2.2 GPC 条件优化

	Table 3 Distillate con	ponents at differen	it time peri	ods in GPC	间码/min	Ps
编号	名称	保留时间/min	6.5~16	7.5~16	9.0~16	10.0~16
2	茶	6.26	\checkmark	\checkmark	V	1
3	苊烯	8.2	\checkmark	V	1	V
5	苊	8.4	\checkmark		V	\checkmark
6	α-六六六	8.59	\checkmark	V	V	\checkmark
7	芴	8.96	V	\checkmark	V	\checkmark
8	β -六六六	9.57	\checkmark	V	\checkmark	\checkmark
9	y-六六六	9.82	V	V	\checkmark	\checkmark
10	六氯苯	9.8	V	\checkmark	\checkmark	\checkmark
11	δ - $\dot{\prec}\dot{\prec}\dot{\prec}$	9.98	\checkmark	V	\checkmark	\checkmark
12	五氯硝基苯	10.12	\checkmark	\checkmark	\checkmark	\checkmark
14	菲	10.21	\checkmark	\checkmark	\checkmark	\checkmark
15	蔥	10.29	\checkmark	\checkmark	\checkmark	\checkmark
16	五氯苯胺	10.72	\checkmark	\checkmark	\checkmark	\checkmark
17	七氯	11.28	\checkmark	\checkmark	\checkmark	\checkmark
18	五氯苯基硫醚	11.67	\checkmark	\checkmark	\checkmark	\checkmark
19	三氯杀螨醇	11.96	\checkmark	\checkmark	\checkmark	\checkmark
20	艾氏剂	11.95	\checkmark	\checkmark	\checkmark	\checkmark
21	荧蒽	12.7	\checkmark	\checkmark	\checkmark	\checkmark
22	环氧七氯	12.68	\checkmark	\checkmark	\checkmark	\checkmark
23	氧氯丹	12.77	\checkmark	\checkmark	\checkmark	\checkmark
24	顺-氯丹	13.18	\checkmark	\checkmark	\checkmark	\checkmark
25	芘	13.23	\checkmark	\checkmark	\checkmark	\checkmark
26	o,p′-滴滴伊	13.36	\checkmark	\checkmark	\checkmark	\checkmark
27	α-硫丹	13.48	\checkmark	\checkmark	\checkmark	\checkmark
28	反-氯丹	13.57	\checkmark	\checkmark	\checkmark	\checkmark
29	顺-九氯	13.79	\checkmark	\checkmark	\checkmark	\checkmark
30	反-九氯	13.79	\checkmark	\checkmark	\checkmark	\checkmark
31	狄氏剂	14.09	\checkmark	\checkmark	\checkmark	
32	p,p′-滴滴伊	14.14	\checkmark	\checkmark	\checkmark	
						转下了

表 3 46 种 POPs 在 GPC 不同时间段的馏出组分

接上贝						
33	异 狄氏剂	14.53				
34	β-硫丹	14.63	\checkmark	\checkmark	\checkmark	\checkmark
35	异狄氏剂醛	15.02	\checkmark	\checkmark	\checkmark	\checkmark
36	p,p′-滴滴滴	15.09	\checkmark	\checkmark	\checkmark	\checkmark
37	o,p′-滴滴涕	15.27	\checkmark	\checkmark	\checkmark	\checkmark
38	硫丹硫酸盐	15.71	\checkmark	\checkmark	\checkmark	\checkmark
39	p,p′-滴滴涕	16.2	\checkmark	\checkmark	\checkmark	\checkmark
40	异狄氏剂酮	16.79	\checkmark	\checkmark	\checkmark	
41	苯并[a]蒽	17.29	\checkmark	\checkmark	\checkmark	V
43	䓛	17.4	\checkmark	\checkmark	\checkmark	N
44	灭蚁灵	19	\checkmark	\checkmark	\checkmark	\checkmark
45	苯并[b]荧蒽	21.34	\checkmark	\checkmark	×	×
46	苯并[k]荧蒽	21.43	\checkmark	N	×	×
47	苯并[a]芘	22.39	\checkmark	\checkmark	×	×
48	茚并[1,2,3-c,d]芘	26.23	\checkmark	V	×	×
49	二苯并[a,h]蔥	26.45	\checkmark	\checkmark	×	×
50	苯并[g,h,i]芘	26.92	\checkmark	\checkmark	×	×

注:"√"表示馏出液通过 GC-MS/MS 定性为检出;"×"表示馏出液通过 GC-MS/MS 定性为未检出

注: "a"为磨碎后样品; "b"为未磨碎的样品; "c"为空白加 标样。 GPC 技术是基于空间排阻的原理根据分子量大 小进行化合物的分离,本研究选用 LCTech 的 40010 型高效快速柱作为净化柱,对经 GPC 净化后的 POPs 收集时间进行了优化。以46 种 POPs 混合标准溶液进 行试验,对经 GPC 净化后的 7.5~16 min 回收率为纵 坐标,以流出时间为横坐标,得到各 POPs 的 GPC 流 出曲线(见图 2)。如图 2 所示,结合水产样品中的 脂肪在 GPC 上的流出情况(3.0 min~7.5 min)和不同 时间段的流出液定性结果(见表 3),确定收集时间 为 7.5~16 min。

水产品中含有较多的水分、脂肪、蛋白质等,样品经 GPC 净化后可以除去大部分的脂肪、蛋白质等大分子杂质。比较了冷冻干燥后样品磨碎前和磨碎后GPC 对脂肪的去除效果,如图 3 所示。

2.3 GC-MS/MS 条件优化

目标物质通过气相色谱单四级杆分离检测后仍存 在分离度不够、可识别度低、检出限高等缺点,无法 满足对水产品中痕量的可持续性污染的检测要求,本 文采用了气相色谱结合三重四级杆来对水产品中可能 存在的可持续性污染物进行分离和检测。

46 种目标物质均为弱极性化合物,色谱柱应采 用弱极性毛细管柱,故选择了HP-5色谱柱和DB-1色 谱柱来进行分离,实验中发现两种色谱柱对目标物的 分离效果都较为理想,但在分离PAHs时HP-5色谱柱 效果相对于 DB-1 柱较差,其中苯并[α]蒽与䓛、苯并 [b]荧蒽与苯并[k]荧蒽,两组同系物之间的分离效果 不明显,故实验选用 DB-1 色谱柱来进行分析。

配制 46 种可持续性污染物的标准品(1 μg/mL) 进 GC-MS/MS 测试,通过 SCAN 模式得到目标物质 的保留时间,同时调节程序升温条件优化各物质的分 离度。调整模式为 SRM-Precursor Ion 模式,得到目标 物质的前驱离子,选择响应较高的离子作为定性和定 量离子进行二级离子的分析,通过 SRM-Product Ion 模式得到所选择离子的产物离子,选择响应较高的离 子对作为该物质的定量/定性离子对,最后利用 SRM-SRM Optimization 模式优化目标物质离子对的 碰撞能量, 选择响应度较高同时干扰较小的离子对和 碰撞能量,得到最终目标物的 GC-MS/MS 条件。

2.4 方法学参数验证

2.4.1 线性范围及方法检出限

配制浓度为 5 μg/L 的 46 种可持续性污染物系列 标准溶液,每个浓度点平行测定 6 次,以峰面积平均 值与内标峰面积的比值 Y 对质量浓度进行线性回归, 得到的回归方程(见表 4)。各 POPs 的线性范围在 1~400 μg/L 之间,相关系数均大于 0.99。

采用美国环境保护署(EPA)推荐方法计算方法 的检出限(method detection limits (MDL)^[20],即能够 被检出并在被分析物浓度大于零时能以99%置信度报 告的物质的最低浓度;其规定在测定时,最少测定 7 个重复的低浓度加标样品,加标的浓度要适宜,一般 为预期值的 1~5 倍,并按照给定分析方法的全过程进 行处理和测定,公式为 MDL=S×t (n-1, a=0.99),其中 S 为 重复测定的标准偏差,t 为自由度为 n-1 时 0.99 的 t分布检验。本研究采用空白鱼肉样品基质的低浓度添 加水平 (5 μ g/kg)进行测定,平行测定 12 份样品。 各 POPs 的方法检出限(干重)如下表所示(见表 4)。

表 4 46 种 POPs	的线性方程、	相关系数及方法检出限	

编号	化合物	线性方程	相关系数R ²	检出限MDL/(µg/kg)
2	茶	y=424688+5720.39X	0.9989	0.0185
3	苊烯	y=-460.6+9410.78X	0.9992	0.1364
5	苊	y=17424+5701.78X	0.9991	0.1923
6	α-六六六	y=2428.02+339.32X	0.9979	0.6522
7	芴	y=606672+42450X	0.9998	0.0287
8	β -六六六	y=446.384+4378.58X	0.9985	0.1145
9	y-六六六	Y=58.5723+2256.51X	0.9987	0.2406
10	六氯苯	Y=33538+4069.36X	0.9988	0.0420
11	δ - $\dot{\prec}$ $\dot{\prec}$ $\dot{\prec}$	Y=949.88+909.206X	0.9961	0.2601
12	五氯硝基苯	Y=-1138.58+1445.58X	0.9960	0.1355
14	菲	Y=123850+3978.76X	0.9994	0.0366
15	葱	Y=-1575.45+6548.4X	0.9998	0.2727
16	五氯苯胺	Y=3458.15+1872.32X	0.9981	0.0347
17	七氯	Y=15491+4419.88X	0.9927	0.0785
18	五氯苯基硫醚	Y=5906.3+2044.4X	0.9957	0.1915
19	三氯杀螨醇	Y=29312.5+6936.36X	0.9955	0.2586
20	艾氏剂	Y=-192.285+1006.72X	0.9998	0.2446
21	荧蒽	Y=33058.4+6481.9X	0.9979	0.2332
22	环氧七氯	Y=275.035+1293.91X	0.9987	0.2885
23	氧氯丹	Y=4772.11+975.876X	0.9935	0.4592
24	顺-氯丹	Y=-120.242+2040.31X	0.9988	0.2459
25	芘	Y=30997.2+4283.27X	0.9973	0.2406
26	o,p′-滴滴伊	Y=-11373.5+430.11X	0.9975	0.0804
27	α-硫丹	Y=814.655+406.578X	0.9970	0.4891

Modern Food Science and Technology

接上页	-			
28	反-氯丹	Y=1304.22+1199.55X	0.9975	0.3409
29	顺-九氯	Y=217.55+1014.04X	0.9976	0.3488
30	反-九氯	Y=629.74+1003.05X	0.9977	0.3409
31	狄氏剂	Y=963.344+182.264X	0.9925	0.4639
32	p,p′-滴滴伊	Y=82938+7978.95X	0.9919	0.0489
33	异狄氏剂	Y=2828.08+738.325X	0.9927	0.2711
34	β -硫丹	Y=1322.13+888.285X	0.9975	0.2332
35	异狄氏剂醛	Y=-736.433+188.467X	0.9967	0.7377
36	p,p′-滴滴滴	Y=-234384+68862.5X	0.9990	0.0291
37	o,p′-滴滴涕	Y=250853+49830.8X	0.9881	0.0344
38	硫丹硫酸盐	Y=326.314+1595.39X	0.9994	0.1815
39	p,p'-滴滴涕	Y=107653+38730.8X	0.9905	0.0932
40	异狄氏剂酮	Y=13963.5+2410.76X	0.9968	0.4327
41	苯并[a]蒽	Y=52759+6814.1X	0.9980	0.1495
43	崫	Y=124324+12476.3	0.9941	0.1613
44	灭蚁灵	Y=4706.63+21655.5X	0.9991	0.7895
45	苯并[b]荧蒽	Y=6071.49+539.717X	0.9984	0.5000
46	苯并[k]荧蒽	Y=-138870+40831X	0.9987	0.1304
47	苯并[a]芘	Y=11423.1+25847.1X	0.9997	0.2153
48	茚并[1,2,3-c,d]芘	Y=2321.51+351.794X	0.9986	0.1557
49	二苯并[a,h]蒽	Y=-256701+33793.3	0.9932	0.0841
50	苯并[g,h,i]芘	Y=221460+1587.45X	0.9928	0.0640

2.4.2 基质加标回收率实验

表 5 鱼肉和虾肉空白基质中 16 种 PAHs 和 32 种 0CPs 的加标回收率和相对标准偏差

入

Table 5 Recoveries and relative standard deviations (RSDs) of the 16 PAHs and 30 OCPs in fish and shrimp matrices (n=6)

	鱼肉										
编一	号 化合物		回收率/%		_ DSD/0/		回收率/%		DSD/0/		
		10 µg/kg	50 µg/kg	100 µg/kg	KSD/70	10 µg/kg	50 µg/kg	100 µg/kg	KSD/70		
2	茶	113.8	112.7	106.3	≤7.3	102.2	91.9	93.3	≤7.4		
3	苊烯	112.9	102.2	119.5	≤10.5	103.5	84.9	118.0	≤7.6		
5	苊	110.9	105.1	112.0	≤7.9	93.0	88.9	82.4	≤7.5		
6	α-六六六	83.6	99.2	101.7	≤6.5	105.2	117.7	120.3	≤8.0		
7	芴	93.8	86.3	90.3	≤9.6	113.8	84.8	108.7	≤10.1		
8	β-六六六	114.6	94.9	101.4	≤7.4	106.7	109.8	99.1	≤9.3		
9	y-六六六	82.6	114.5	88.3	≤8.2	111.9	119.2	82.4	≤10.0		
10) 六氯苯	107.1	110.6	102.2	≤7.0	109.6	93.2	116.1	≤6.2		
11	δ - \dot{n} \dot{n}	109.8	85.3	88.6	≤9.8	99.9	98.4	117.2	≤64		
12	五氯硝基苯	85.3	102.0	102.9	≤8.1	110.1	87.5	90.2	≤9.6		
14	. 菲	81.9	120.6	83.2	≤10.0	96.7	115.6	87.3	≤8.3		
15	蔥	89.4	118.2	84.0	≤6.3	110.9	86.5	86.0	≤8.6		
16	五氯苯胺	121.0	88.3	115.6	≤6.4.	98.8	109.3	81.3	≤8.2		
17	七氯	119.1	102.7	84.8	≤7.4	98.5	101.6	99.8	≤7.1		
18	五氯苯基硫醚	113.6	112.9	99.5	≤6.5	95.1	113.7	88.1	≤6.8		

现代食	品	科技
-----	---	----

Modern Food Science and Technology

2020, Vol.36, No.4

接上页	ī								
19	三氯杀螨醇	114.9	81.8	99.1	≤10.0	81.3	109.6	115.8	≤9.0
20	艾氏剂	91.4	106.2	90.3	≤4.3	109.4	108.7	100.1	≤7.7
21	荧蔥	95.5	100.3	109.1	≤6.9	100.1	89.8	113.7	≤8.5
22	环氧七氯	105.5	81.4	114.6	≤7.2	116.6	103.0	95.6	≤8.8
23	氧氯丹	98.2	90.7	116.0	≤9.7	86.8	108.6	88.5	≤9.9
24	顺-氯丹	99.8	115.3	116.4	≤7.4	97.0	97.6	112.5	≤8.0
25	芘	95.6	100.6	90.3	≤6.9	81.0	119.2	81.0	≤10.8
26	o,p′-滴滴伊	107.9	93.5	100.3	≤4.2	97.9	112.1	114.4	≤8.4
27	α-硫丹	88.4	112.2	98.5	≤9.1	97.9	118.5	93.5	≤8.4
28	反-氯丹	105.0	115.5	107.0	≤4.5	112.1	86.7	97.7	≤9.8
29	顺-九氯	110.8	81.6	116.5	≤7.1	84.9	94.9	84.3	≤6.9
30	反-九氯	82.6	101.0	83.5	≤6.8	102.7	107.9	87.9	≤10.9
31	狄氏剂	82.5	114.0	116.8	≤6.4	92.9	116.9	87.3	≤10.8
32	p,p′-滴滴伊	115.3	114.7	84.9	≤10.9	87.8	112.5	114.0	≤9.1
33	异狄氏剂	118.8	90.6	88.8	≤8.1	100.9	100.3	101.0	≤7.0
34	β-硫丹	106.3	85.0	105.4	≤4.7	84.7	85.6	92.8	≤10.0
35	异狄氏剂醛	100.9	106.2	107.0	≤7.2	98.2	92.9	117.2	≤8.3
36	p,p′-滴滴滴	85.6	95.4	103.5	≤5.5	103.0	111.4	100.9	≤9.0
37	o,p′-滴滴涕	86.4	89.9	80.8	≤9.8	86.1	91.0	107.8	≤7.5
38	硫丹硫酸盐	113.7	82.5	93.7	≤4.8	83.7	86.4	88.9	≤8.3
39	p,p'-滴滴涕	100.8	120.3	94.2	≤8.1	86.5	117.4	109.3	≤11.0
40	异狄氏剂酮	112.0	99.4	87.2	≤6.3	86.3	84.1	93.6	≤10.9
41	苯并[a]蒽	81.1	82.7	81.5	≤5.8	87.6	99.6	110.9	≤9.4
43	䓛	85.9	102.3	100.2	≤4.3	87.6	99.6	110.9	≤6.2
44	灭蚁灵	105.5	82.1	98.3	≤6.4	101.3	119.9	84.4	≤7.5
45	苯并[b]荧蒽	105.2	103.8	92.5	≤8.6	112.1	115.2	116.0	≤8.3
46	苯并[k]荧蒽	111.7	84.7	107.1	≤6.4	119.0	115.7	91.5	≤8.7
47	苯并[a]芘	93.9	89.0	105.3	≤4.1	100.2	103.0	94.3	≤8.4
48	茚并[1,2,3-c,d]芘	106.8	95.6	113.1	≤10.9	114.7	115.9	85.1	≤6.7
49	二苯并[a,h]蔥	103.5	112.3	107.9	≤8.0	95.7	99.2	110.6	≤6.5
50	苯并[g,h,i]芘	95.0	120.3	104.4	≤6.6	102.5	87.7	117.4	≤8.1

分别以阴性鱼肉和虾肉样品为基质进行低、中、 高3个水平的加标回收试验,每个水平平行测定6次, 3个加标水平的平均回收率在81.0%~121.0%之间, RSD小于11.0(见表5),说明方法的准确度和精密度 良好。

2.5 实际样品分析

在湖北长江中下游流域各地市的超市中随机选取 各类水产共 224 批次,采用本实验建立的方法进行处 理与测定。结果发现,水产品中多环芳烃检出共 227 批次,检出率为 100%;有机氯检出 162 批次,检出 率为 72.3%,具体检测结果如图 4 和图 5 所示。

图 4 227 批次水产品中持久性有机污染物的检测结果 Fig.4 The results of persistent organic pollutants in 227 batches of aquatic products

现代食品科技

batches of aquatic products

结论 3

本文建立了气相色谱-三重四极杆质谱测定水产 品中的46种持久性有机污染物的方法,利用冷冻干燥 法除去水产品中的水分,碾磨成均匀的粉末后加入同 位素内标,再通过快速溶剂萃取仪进行提取,定容至 适当体积进行凝胶色谱净化除去脂肪,最后浓缩定容 分析,减少水产品中复杂本底对检测结果的干扰,提 升对痕量持久性污染物的检测能力。本方法适用于水 产品中持久性有机污染物的测定。

参考文献

- [1] 陈蝶,高明,吴南翔.持久性有机污染物的毒性及其机制研 究进展[J].环境与职业医学,2018,35(6):558-565 CHEN Die, GAO Ming, WU Nan-xiang. Progress on toxicity and mechanisms of persistent organic pollutants [J]. Journal of Environmental & Occupational Medicine, 2018, 35(6): 558-565
- 王鹏,朱荣菊.食品中持久性有机污染物现状及对策研究[J]. [2] 食品安全质量检测学报,2016,7(11):4557-4561 WANG Peng, ZHU Rong-ju. Present situation and countermeasures of persistent organic pollutants in food [J]. Journal of Food Safety and Quality, 2016, 7(11): 4557-4561
- 张秀雯,郎春燕,曹建平,等.SPME-GC 联用测定沉积物中 [3] PCBs 的影响因素[J].当代化工,2017,46(2):207-210 ZHANG Xiu-wen, LANG Chun-yan, CAO Jian-ping, et al. Effect of different conditions on determination of PCBs in sediments by SPME-GC [J]. Contemporary Chemical Industry, 2017, 46(2): 207-210
- 周蓓蕾,赵玲,沈燕,等.气相色谱-串联质谱法测定虾体中18 [4] 种多氯联苯[J].农药学学报,2017,19(2):223-30 ZHOU Bei-lei, ZHAO Ling, SHEN Yan, et al. Multi-determination of 18 polychlorinated biphenyls in

Macrobrachium nipponense by gas chromatography-tandem mass spectrometry [J]. Chinese Journal of Pesticide Science, 2017, 19(2): 223-230

史信.《中国居民膳食指南(2016)》发布[J].中国妇幼健康 [5] 研究,2016,27(5):670

SIH Xin. Dietary guidelines for Chinese residents [J]. Chinese Journal of Woman and Child Health Research, 2016, 27(5): 670

- [6] Olatunji O S, Fatoki O S, Opeolu B O, et al. Determination of polycyclic aromatic hydrocarbons [PAHs] in processed meat products using gas chromatography-Flame ionization detector [J]. Food Chem, 2014, 156(11): 296-300
- 蔡小虎,蔡述伟,时磊,等.QuEChERS-GC/ECD 法分析土壤 [7] 和沉积物中残留有机氯农药和多氯联苯[J].环境监控与预 警,2016,8(3):14-17

CAI Xiao-hu, CAI Shu-wei, SHI Lei, et al. Analysis of residual organochlorine pesticides and polychlorobiphenyls in soils and sediments by QuEChERS coupled with GC/ECD [J]. Environmental Monitoring and Forewarning, 2016, 8(3): 14-17

- [8] Liu Q, Guo Y, Sun X, et al. Determination of 15 polycyclic aromatic hydrocarbons in aquatic products by solid-phase extraction and GC-MS [J]. Journal of Separation Science, 2018, 41(10): 2188-2196
- Li W, Liu D, Li J, et al. Matrix solid-phase dispersion [9] combined with GC-MS/MS for the determination of organochlorine pesticides and polychlorinated biphenyls in marketed seafood [J]. Chromatographia, 2017, 80(5): 1-12
- [10] Li H D, Huo L G, Wang W B, et al. The determination of PAHs in fish by GC-QqQ-MS/MS [J]. Polycyclic Aromatic Compounds, 2013, 33(2): 97-107
- [11] Shi Y, Wu H, Wang C, et al. Determination of polycyclic aromatic hydrocarbons in coffee and tea samples by magnetic solid-phase extraction coupled with HPLC-FLD [J]. Food Chem, 2016, 199(6): 75-80
- [12] Serpe F P, Esposito M, Gallo P, et al. Optimisation and validation of an HPLC method for determination of polycyclic aromatic hydrocarbons (PAHs) in mussels [J]. Food Chem, 2010, 122(3): 920-925
- [13] 崔勇,方赤光,李青,等.生活饮用水及水源水中 15 种有机污 染物残留量的超高效液相色谱-串联质谱同时测定法[J]. 环境与健康杂志,2018,35(3):252-255

CUI Yong, FANG Chi-guang, LI Qing, et al. Simultaneous determination of fifteen organic contaminants residue in drinking water and source water by ultra performance liquid

Modern Food Science and Technology

2020, Vol.36, No.4

chromatography-mass/mass spectrometry [J]. Journal of Environment and Health, 2018, 35(3): 252-255

- [14] Kamlesh S, Hui-fen W. Ultrasonication followed by single-drop microextraction combined with GC/MS for rapid determination of organochlorine pesticides from fish [J]. Journal of Separation Science, 2015, 31(2): 380-386
- [15] Asati A, Satyanarayana G N V, Srivastava V T, et al. Determination of organochlorine compounds in fish liver by ultrasound-assisted dispersive liquid-liquid microextraction based on solidification of organic droplet coupled with gas chromatography-electron capture detection [J]. Journal of Chromatography A, 2018, 1561(3): 20-27
- [16] 王伟.基质固相分散-快速溶剂萃取 GC/MS 法同时测定土 壤中有机氯农药和多环芳烃[J].中国环境监测,2019,35(1): 135-41

WANG Wei. Simultaneous determination of organochlorine pesticides and polycyclic aromatic hydrocarbons in soil by matrix solid-phase dispersion-accelerated solvent extraction and gas chromatography-mass spectrometry [J]. Environmental Monitoring in China, 2019, 35(1): 135-141

[17] 李冰,霍鲁格.气相色谱-三重四级杆串联质谱法检测鱼肉

(上接第 171 页)

- [38] Gilliland S E, Nelson C R, Maxwell C. Assimilation of cholesterol by *Lactobacillus acidophilus* [J]. Applied and Environmental Microbiology, 1985, 49(2): 377-381
- [39] Pereira D I A, Gibson G R. Effects of consumption of

(上接第 184 页)

[13] 尚碧娇,左志晗,李文悦,等.Biolog-ECO 方法探究饲喂益生 菌对凡纳滨对虾肠道微生物代谢及有效作用时间的影响 [J].水产学报,2019,43(4):461-469

SHANG Bi-jiao, ZUO Zhi-han, LI Wen-yue, et al. Effects of probiotics on intestinal microbial metabolism and effective action time of *Litopenaeus vannamei* by Biolog-ECO [J]. Journal of Fisheries of China, 2019, 43(4): 461-469

[14] 尚碧娇,左志晗,窦春萌,高通量测序法分析两株益生菌对

中多环芳烃的研究[J].现代食品科技,2013,29(6):1395-1399 LI Bing, HUO Lu-ge. Determination of pollycyclic aromatic hydrocarbons in fish by GC-QqQ-MS/MS [J]. Modern Food Science and Technology, 2013, 29(6): 1395-1399

- [18] 李晓贝,刘福光,周昌艳,等.表面活性剂结合 QuEChERS-气相色谱-串联质谱法同时测定大豆油中有机氯农药、多氯联苯及多环芳烃[J].质谱学报,2019,40(1):60-73
 LI Xiao-bei, LIU Fu-guang, ZHOU Chang-yan, et al. Simultaneous determination of OCPs, PCBs and PAHs in soybean oil using surfactant-based QuEChERS method coupled with GC-MS/MS [J]. Journal of Chinese Mass Spectrometry Society, 2019, 40(1): 60-73
- [19] United States Environmental Protection Agency, Pressurized Fluid Extrction: EPA-3545A-2000 [S]. Washington, DC, United States: United States Environmental Protection Agency, 2000
- [20] United States Environmental Protection Agency, Defiition and Proce: EPA 821-R-16-006-2002 [S]. Washington, DC, United States: United States Environmental Protection Agency, 2002

probiotics and prebiotics on serum lipid levels in humans [J]. Critical Reviews in Biochemistry and Molecular Biology, 2002, 37(4): 259-281

凡纳滨对虾肠道菌群结构的影响[J].水产学报,2018, 42(12):113-122

SHANG Bi-jiao, ZUO Zhi-han, DOU Chun-meng, et al. Analysis of the characteristics of *Litopenaeus vannamei* intestinal microflora after being fed with two probiotics using high-throughput sequencing method [J]. Journal of Fisheries of China, 2018, 42(12): 113-122