基于近红外技术无损检测深州蜜桃果实内部品质
CSTR:
作者:
作者单位:

作者简介:

关晔晴(1986-),女,博士,副研究员,研究方向:果实采后生物学,E-mail:guanyeqing@126.com 通讯作者:关军锋(1966-),男,博士,研究员,研究方向:果实品质生物学,E-mail:junfeng-guan@263.net

通讯作者:

中图分类号:

基金项目:

河北省农林科学院创新工程项目(2019-2-1-1);河北省现代农业产业技术体系项目(HBCT2018100207)


Near-infrared Technology-based Non-destructive Detection of the Internal Quality of Shenzhou Peaches
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了寻求一种快速、无损检测“深州蜜桃”果实内部品质的方法,该研究中采用SACMI近红外分析仪以漫反射方式对采收期果实可溶性固形物含量(Soluble Solid Content,SSC)、硬度、pH进行了无损检测,并与传统参考方法所测结果进行比较。结果表明,剔除异常值后,SSC无损检测预测值与传统参考方法实测值的两组数据相关性(R2=0.79,p<0.01,SEP=0.47)优于硬度(R2=0.47,p<0.01,SEP=2.01)及pH(R2=0.40,p<0.01,SEP=0.14);SSC模型(RPD=2.15,RMSEP=0.79%,RSD=6.2%)预测性能较高,可满足于快速检测,pH模型(RPD=1.29,RMSEP=0.16,RSD=3.1%)、硬度模型(RPD=1.37,RMSEP=2.37 kg/cm2,RSD=39.4%)预测性能较低。研究表明:采用近红外分析仪检测“深州蜜桃”果实SSC是可行的,可为果实内部品质的评价提供了实时、快速、无损的检测方法,进而为其智能分级提供理论基础与技术支持。

    Abstract:

    To develop a rapid and non-destructive method for detecting the internal quality of the “Shenzhou Peaches”, the SACMI near-infrared analyzer was used in the diffuse reflection for non-destructive measurements of the soluble solid content (SSC), firmness, and pH of fruits ready for harvest. The results were compared with those obtained by traditional methods. The results reveal that, after excluding outliers, the correlations between the predicted SSC values by the non-destructive method and the measured values using traditional methods (R2=0.79, p<0.01, SEP=0.47) are better than those of firmness (R2=0.47, p<0.01, SEP=2.01) and pH (R2=0.40, p<0.01, SEP=0.14). The SSC model (RPD=2.15, RMSEP=0.79%, RSD=6.2%) exhibits better prediction performances and can enable rapid detection. Meanwhile, the pH model (RPD=1.29, RMSEP=0.16, RSD=3.1%) and the firmness model (RPD=1.37, RMSEP=2.37 kg/cm2, RSD=39.4%) gave less satisfactory prediction results. This research has shown that detecting the SSC of “Shenzhou Peach” fruits is feasible with a near-infrared analyzer. This is a real-time, fast and non-destructive method for the internal quality evaluation of fruits. This finding can provide a theoretical foundation and technical support for intelligent future grading and classification of fruits.

    参考文献
    相似文献
    引证文献
引用本文

关晔晴,王冬,李楠,付亚雄,程玉豆,关军锋*.基于近红外技术无损检测深州蜜桃果实内部品质[J].现代食品科技,2022,38(10):290-296.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-21
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-11-02
  • 出版日期:
文章二维码
×
因办公室装修,期间暂时无法接听电话,如有事请QQ或邮件联系。信息咨询:QQ: 2553003667稿件处理1:QQ: 1542354573稿件处理2:QQ: 2195608851 财务咨询:QQ: 1347040116 Email:mfood@scut.edu.cn、mfood@foxmail.com