基于光谱波段优化的鸡肉冻干粉粗蛋白近红外定量预测模型研究
CSTR:
作者:
作者单位:

作者简介:

陶琳丽(1974-),女,博士,副教授,研究方向:动物营养与饲料科学 通讯作者:张曦(1960-),男,教授,研究方向:动物营养与饲料科学

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(31760487);云南省重大科技专项(2016ZA008);云南省现代农业禽蛋产业技术体系项目(2017KJTX0017);国家高技术研究发展计划(863计划)项目(2011AA100305)


Quantitative Prediction Model of the Crude Protein Content in the Chicken Freeze-dried Powder Based on the Optimizing Spectral Region of Near Infrared Spectroscopy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文通过将鸡肉蛋白质近红外光谱特性与组合间隔偏最小二乘法(SiPLS)、遗传算法(GA)相结合筛选校正模型的最佳建模光谱区域,旨在提高鸡肉冻干粉粗蛋白近红外定量预测模型的预测精度和模型稳健性。以260个鸡腿肌冻干粉为研究对象,提取其中100个样品的蛋白质,在999.7~2502.3 nm扫描腿肌冻干粉和腿肌提取蛋白冻干粉的NIRS,比较两光谱异同,根据腿肌提取蛋白冻干粉NIRS光谱特征及主成分分析(PCA)结果将全谱划分为10个建模光谱区,采用PLS建模,比较全谱建模与特征光谱组合区建模的优劣,筛选出基于鸡肉蛋白特征光谱的建模光谱组合区,应用FiPLS和BiPLS在全谱和优选出的光谱区再次进行建模光谱区域筛选,接着使用GA和FBiPLS进行第三次建模光谱筛选。结果表明:在999.7~1850.4 nm波长上采用FBiPLS法优选出的建模光谱区1811.6~1794.0 nm、1756.2~1722.4 nm、1704.4~1688.9 nm、1594.4~1580.8 nm、1510.8~1485.7 nm、1472.1~1424.3 nm、1222.2~1057.6 nm、1051.2~1008.7 nm所建模型最优。研究显示,为保证校正模型的精确性和稳定性,在筛选最佳建模波长时,应将样品预测成分的光谱特征与光谱筛选数学算法相结果,才能获得更好的建模结果。

    Abstract:

    This paper is trying to obtain the optimum spectra to build the calibration model by the spectral characteristics of the chicken protein in near infrared region, interval partial least-squares regression (iPLS) and geneti calgorithm (GA), and aims to improve the prediction accuracy and robustness of the near infrared spectroscopy quantitative prediction model of the crude protein content in the chicken freeze-dried powder.Taking the muscles powders of 260 freeze-dried legs as the research object, the proteins from the muscles powders of 100 freeze-dried legs were extracted, the near infrared reflectance spectra (NIRS) from the freeze-dried leg muscle powder samples and the protein samples of the freeze-dried leg muscle powder were scanned in the 999.7~2502.3 nm wavelength region. The differences between two NIRS were studied. The NIRS of the freeze-dried leg muscles powder was divided into 10 spectral regions based on spectral characteristic and principal component analysis (PCA). The partial least squares regression (PLS) was used to build the quantitative prediction model. First, the modeling results based on full-spectrum and combining spectral regions of the characteristic spectra were compared to select the optimum spectral regions. Next, the PLS (FiPLS) and backward interval PLS (BiPLS). It is the third time the modeling spectra were filtrated by GA and forward and backward regions and the optimum combining region based on the characteristic spectra by forward interval PLS (FiPLS) and backward interval PLS optimum spectral regions were extracted from the full-spectrum (BiPLS). Then, the modeling spectra were filtrated by GA and forward and backward interval partial least squares (FBiPLS). The result showed that the most optimum modeling spectral ranges were 1811.6~1794.0 nm、1756.2~1722.4 nm、1704.4~1688.9 nm、1594.4~1580.8 nm、1510.8~1485.7 nm、1472.1-1424.3 nm、1222.2~1057.6 nm and 1051.2~1008.7 nm by using FBiPLS. In conclusion, to ensure the accuracy and robustness of the calibration model, the selection method of optimum spectral regions was the combination of the spectral characteristics of sample composition and mathematical algorithm of wavelength selection.

    参考文献
    相似文献
    引证文献
引用本文

陶琳丽,杨秀娟,邓君明,曹胜雄,陈琛,钟兴文,孙照程,孔凡虎,华雪妃,章雨竹,张曦.基于光谱波段优化的鸡肉冻干粉粗蛋白近红外定量预测模型研究[J].现代食品科技,2019,35(8):236-246.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-03-25
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-09-11
  • 出版日期:
文章二维码
×
因办公室装修,期间暂时无法接听电话,如有事请QQ或邮件联系。信息咨询:QQ: 2553003667稿件处理1:QQ: 1542354573稿件处理2:QQ: 2195608851 财务咨询:QQ: 1347040116 Email:mfood@scut.edu.cn、mfood@foxmail.com