基于数据挖掘的兽药质量风险预测
CSTR:
作者:
作者单位:

作者简介:

田兴国(1976-),男,博士,助理研究员,研究方向:为食品安全 通讯作者:吕建秋(1964-),男,研究员,研究方向:科技管理,农技推广

通讯作者:

中图分类号:

基金项目:

国家重大农技推广专项(2015GJZDNJTG);科技部创新方法专项(2015IM010400A4)


Quality-Risk Prediction of Veterinary Drugs by Data Mining
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    当前,兽药残留已成为食品安全的源头问题之一,养殖户缺乏鉴别假兽药的能力,兽药质量风险较大,为了提高养殖户的辨假能力,减少不合格兽药的使用,降低兽药使用风险,通过整理中国兽医药品监察所的抽检数据,运用SPSS Modeler软件,以C5.0、Logistic、神经网络构建数据挖掘的分类预测模型,对兽药质量进行分类预测。发现三种分类模型的整体分类精度偏低,对此,选用组合分类器对模型进行了优化,并对神经网络、二元逻辑回归-神经网络及决策树-神经网络进行了比较,发现从分类精度以及泛化性能上来讲,决策树-神经网络的整体表现最好,最后,本文构建了决策树-神经网络的兽药质量风险预测模型,并对之进行了进一步的优化,预测准确率能达到74.34%,可为养殖户的购买决策提供参考。

    Abstract:

    Veterinary drug residues had become one of the source problems for food security at present. It was difficult for farmers to identify the fake veterinary drugs, which resulted in the risks of veterinary drugs quality. To improve the identification ability of the farmers and reduce the utilization of unqualified veterinary drugs, the data mining classification prediction model, established by C5.0, Logistic, neural network, was used to classify and predict the quality of veterinary drugs by sorting the sampling data of Chinese Veterinary Drug Administration based on SPSS Modeler software. Results showed that the classification accuracy of the three models was low, which resulted in optimizing the model by combination of classifier, and the neural network, binary logic regression - neural network, decision tree-neural network were compared. The overall performance of decision tree - neural network was the best in classification accuracy and generalization performance. Finally, the model for predicting the veterinary drugs quality in decision tree-neural network was established and further optimized, and the prediction accuracy reached 74.34%..

    参考文献
    相似文献
    引证文献
引用本文

田兴国,陈江涛,吕建秋.基于数据挖掘的兽药质量风险预测[J].现代食品科技,2017,33(11):212-218.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-06-14
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-11-30
  • 出版日期:
文章二维码
×
因办公室装修,期间暂时无法接听电话,如有事请QQ或邮件联系。信息咨询:QQ: 2553003667稿件处理1:QQ: 1542354573稿件处理2:QQ: 2195608851 财务咨询:QQ: 1347040116 Email:mfood@scut.edu.cn、mfood@foxmail.com