高光谱技术结合CARS-ELM的油桃品种判别研究
CSTR:
作者:
作者单位:

作者简介:

赵旭婷(1992-),女,硕士研究生,研究方向:农产品检测技术与装备 通讯作者:张淑娟(1963-),女,教授,博士生导师,研究方向:农产品检测技术与装备

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(31271973)


Study on Varieties Discrimination of Nectarine by Hyperspectral Technology Combined with CARS-ELM Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于高光谱技术研究竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)结合极限学习机(Extreme learning machine,ELM)对油桃品种判别的可行性。本文利用高光谱成像技术选取油桃420~1000 nm的高光谱图像数据,经卷积平滑法(Savitzky-Golay smoothing,SG)、附加散射校正算法(Multiplicative Scatter correction,MSC)、基线校正(Baseline)、变量标准化算法(Standard Normalized Varite,SNV)等预处理方法处理原始数据,通过PLSR模型确定Baseline为最佳预处理方法。采用主成分分析法(Principal Component Analysis,PCA)、连续投影算法(Successive Projections Algorithm,SPA)与竞争性自适应重加权算法等提取的特征波长,建立偏最小二乘(Partial Least Square,PLS)和极限学习机鉴别模型进行比较研究。结果显示:基于CARS算法提取的特征波长构建的CARS-ELM和CARS-PLS模型性能最优。CARS-PLS预测集相关系数(RP)和均方根误差(RMSEP)分别为0.942和0.205;CARS-ELM的RP和RMSEP分别为0.931和0.119。说明CARS是一种有效的提取特征波长的方法,且ELM与PLS对模型的预测能力相当,可见利用高光谱图像技术结合CARS-ELM对油桃的品种判别是可行的。

    Abstract:

    The varieties discrimination feasibility of nectarines by hyperspectra technology combined with competitive adaptive reweighted sampling (CARS) and extreme learning machine(ELM) were discussed. Hyperspectra imaging technology was used to select the hyperspectra images data of three different types of nectarines in the range of 420 to 1000nmin this study.The raw spectra were processed by Savitzky-Golay, Multiplicative Scatter Correction, Baseline, and Standard Normalized Varite. The most appropriate pretreatment method was confirmed by the PLSR model. In order to extract characterized wavelengths, there are three different approaches have been used: principal component analysis (PCA), successive projections algorithm (SPA), and CARS. Furthermore, partial least square(PLS)and extreme learning machine (ELM) on the basis of three different characterized wavelengths were used to build the model for identifying the species of nectarines. The results of tests implicated that the performance of CARS-PLS and CARS-ELM classification model was optimized using optimal characterized wavelengths of CARS algorithm. The PLS and ELM model correlation coefficient (Rp), the root mean squared error (RMSEP) of prediction set were 0.942, 0.205 and 0.931, 0.119, respectively. It indicated that CARS algorithm was one of the effective methods for exacting the characterized wavelengths,and ELM model prediction ability was equivalent with conventional PLS model. It approves that the hyperspectral imaging technology combined with CARS-ELM is feasible to discriminate the nectarine varietiesn.

    参考文献
    相似文献
    引证文献
引用本文

赵旭婷,张淑娟,刘蒋龙,孙海霞.高光谱技术结合CARS-ELM的油桃品种判别研究[J].现代食品科技,2017,33(10):281-287.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-02-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-10-31
  • 出版日期:
文章二维码
×
因办公室装修,期间暂时无法接听电话,如有事请QQ或邮件联系。信息咨询:QQ: 2553003667稿件处理1:QQ: 1542354573稿件处理2:QQ: 2195608851 财务咨询:QQ: 1347040116 Email:mfood@scut.edu.cn、mfood@foxmail.com