不同自然场景下葡萄果实识别方法研究
CSTR:
作者:
作者单位:

作者简介:

作者简介:马本学(1970-),男,博士,教授,主要从事农产品智能化检测与分级装备研究

通讯作者:

中图分类号:

基金项目:

国家科技支撑计划项目(2015BAD19B03);大学生创新创业训练计划项目(201410759037)


Study on the Recognition Method of Grape in Different Natural Environment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文研究了自然场景下不同颜色葡萄果实的识别方法,针对晴天顺光、晴天逆光及夜间三种光照情况下采集的葡萄图像进行处理,在图像预处理的基础上提出了基于不同颜色空间的图像分割方法,利用最大类间方差法和直方图双峰法分别获取最佳阈值,得到葡萄串的轮廓图像,实现目标果实和复杂背景区域的分割。根据目标果实轮廓图像绘制其最小外接矩形,并利用Harris角点检测法提取果实重心及采摘点坐标等特征信息。实验结果表明:葡萄识别算法可对图像中果实部分快速准确地识别出来,并在很大程度上降低了光照强度等因素对果实识别效果的影响,其中绿色葡萄在晴天顺光、晴天逆光、夜间的识别率分别为93.3%、86.7%、96.7%,紫色葡萄在三种光照情况下识别率分别为90%、83.3%、96.7%。

    Abstract:

    This paper is mainly about how to recognize different color grapes in nature, The grape images that taken under a fine day of front lighting, back lighting and night conditions, A novel grape image segmentation method based on different color space was proposed. The maximum classes square error method and the histogram method were used to obtain the best threshold, to get the grape bunches contours images and to cut the complex background region apart. The minimum enclosing rectangle was drawn on account of the image contour of target grapes, the feature information of grape barycenter and the plucking positions were extracted by the Harris corner test. The results showed that the identification algorithm of grapes could accurately identify the grapes in the picture and reduce impacts of illumination intensity in a large extent, among which the recognition ratio of green grapes in front lighting, back lighting and night conditions were 93.3%、86.7% and 96.7%, while the recognition ratio of purple grapes were 90%、83.3% and 96.7%.

    参考文献
    相似文献
    引证文献
引用本文

马本学,贾艳婷,梅卫江,高国刚,吕琛,周强.不同自然场景下葡萄果实识别方法研究[J].现代食品科技,2015,31(9):145-149.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-11-06
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2015-09-30
  • 出版日期:
文章二维码
×
因办公室装修,期间暂时无法接听电话,如有事请QQ或邮件联系。信息咨询:QQ: 2553003667稿件处理1:QQ: 1542354573稿件处理2:QQ: 2195608851 财务咨询:QQ: 1347040116 Email:mfood@scut.edu.cn、mfood@foxmail.com