近红外定量模型快速测定大米的营养成分
CSTR:
作者:
作者单位:

作者简介:

黄林森(1996-),男,本科,研究方向:食品生物技术 通讯作者:刘冬(1968-),男,博士,教授,研究方向:食品生物技术

通讯作者:

中图分类号:

基金项目:

深圳市科学计划项目(601821K27038);深圳职业技术学院校级重点项目(601722K27014)


Near Infrared Spectral Quantitative Model of the Nutrient Content in Rice
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    大米中的蛋白质、脂肪、碳水化合物和水分是大米的重要营养成分,这些组分的检测需要依赖国标法,检测过程繁琐冗长,污染大,实现近红外快速检测具有重要的现实意义。本实验以75个大米样品为研究对象,用国标法测定其蛋白质、脂肪、碳水化合物和水分的含量,用Antares Ⅱ型近红外光谱仪采集光谱信息。将样品分为校正集和验证集,其中校正集63个,验证集12个,通过6种光谱预处理方法和3种建模方法分别建立大米的蛋白质、脂肪、碳水化合物和水分的定量模型,用Workflow调用模型来实现四种组分的快速检测。结果表明,蛋白质、碳水化合物通过一阶导数与Savitzky-Golay滤波对光谱进行处理;脂肪、水分通过二阶导数和Savitzky-Golay滤波对光谱进行处理;再通过PLS回归与国标法的测定值相关联建立的大米中蛋白质、脂肪、碳水化合物及水分的定量模型具有较高的预测精度。蛋白质、脂肪、碳水化合物和水分的预测模型的内部交叉验证的相关系数R分别为0.9266、0.9333、0.9198、0.9175,RMSECV分别为0.280、0.133、0.362、0.270,内部交叉验证的相关系数R均在0.91以上,RMSECV均小于0.37,可实现对大米中蛋白质、脂肪、碳水化合物和水分的快速检测。

    Abstract:

    Protein, fat, carbohydrate and moisture in rice are important nutrients in rice. The detection of these components needs to rely on the national standard method. The detection process is tedious and has large pollution. In this experiment, 75 rice samples were studied, and their contents of protein, fat, carbohydrate and moisture were measured by national standard method. Spectral information was collected by AntaresⅡ infrared spectrometer. Samples were divided into verification set and correction set, including 63 samples in correction set and 12 samples in verification set. A quantitative model of protein, fat, carbohydrate and moisture of rice was established through six spectral pretreatment methods and three modeling methods, and the model by running workflow was used to realize rapid detection of four components. The results showed that proteins and carbohydrates followed by the first derivative and Savitzky-Golay filtering, while fat and water followed by the second derivative and Savitzky-Golay filtering. The quantitative model of protein, fat, carbohydrate and water content in rice was established by Least partial square method in combination with the measured values by national standard method and has high prediction accuracy. The internal cross-validation coefficient of the prediction model of protein, fat, carbohydrate and moisture is 0.9266, 0.9333, 0.9198, 0.9175, and RMSECV is 0.280, 0.133, 0.362 and 0.270, respectively. The internal cross-validation R value is above 0.91 and RMSECV is less than 0.35, which can realize the rapid detection of protein, fat, carbohydrate and moisture in rice.

    参考文献
    相似文献
    引证文献
引用本文

黄林森,刘冬,覃统佳,林秀文,周志航,黄锦玲,从彦丽.近红外定量模型快速测定大米的营养成分[J].现代食品科技,2019,35(8):317-324.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-03-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-09-11
  • 出版日期:
文章二维码
×
因办公室装修,期间暂时无法接听电话,如有事请QQ或邮件联系。信息咨询:QQ: 2553003667稿件处理1:QQ: 1542354573稿件处理2:QQ: 2195608851 财务咨询:QQ: 1347040116 Email:mfood@scut.edu.cn、mfood@foxmail.com