基于电子鼻和可见/近红外光谱技术的羊肉 真实性鉴别

张春娟^{1,2},郑晓春²,古明辉²,张德权^{1,2},陈丽^{2*}

(1. 宁夏大学食品与葡萄酒学院,宁夏银川 750021)

(2. 中国农业科学院农产品加工研究所,农业农村部农产品质量安全收贮运管控重点实验室,北京 100193)

摘要:为快速、准确鉴别市面上羊肉中掺入鸭肉的商品,本研究应用电子鼻结合可见/近红外光谱技术,实现了羊肉中掺入不同 比例鸭肉样品的有效鉴别。试验制备了 174 个羊肉中掺入不同比例鸭肉样品,分别采集了样品电子鼻数据和 200~1 100 nm、900~ 1 700 nm 波长范围内的反射光谱数据,利用 2 分类定性判别和 6 分类定量检测法分别构建了支持向量机(Support Vector Machine, SVM) 和偏最小二乘法 (Partial Least Squares, PLS) 定性定量判别模型,并用 6 分类最优模型进行预测。结果表明:电子鼻可以利用不同 比例羊肉鸭肉样品间的气味差异对不同组进行判别,羊肉中含有的挥发性香气成分如萜烯类、芳香类、有机硫化物等物质的含量高于 鸭肉。基于两个波段数据、两种分类方法构建的 PLS 模型判别效果优于 SVM 模型,总的判别正确率均达到 96%以上,光谱数据经 过多元散射校正处理的效果最佳,且最优模型预测效果良好。电子鼻结合可见/近红外光谱分析技术可有效鉴别羊肉中掺入不同比例 鸭肉样品,为羊肉真实性的快速无损鉴别提供技术支撑。

关键词: 羊肉真实性; 电子鼻; 可见/近红外光谱; 定性鉴别; 定量检测 文章编号: 1673-9078(2022)12-383-393

DOI: 10.13982/j.mfst.1673-9078.2022.12.0155

Authenticity Identification of Mutton Based on Electronic Nose and

Visible/Near-infrared Spectroscopy

ZHANG Chunjuan^{1,2}, ZHENG Xiaochun², GU Minghui², ZHANG Dequan^{1,2}, CHEN Li^{2*}

(1.School of Food and Wine, Ningxia University, Yinchuan 750021, China) (2.Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China)

Abstract: In order to identify the minced mutton products adulterated with duck rapidly and accurately, an electronic nose combined with visible/near-infrared spectroscopy technology was used to realize effective identification. A total of 174 samples of minced mutton adulterated with duck in different proportions were prepared, and electronic nose data and reflection spectra in the wavelength ranges of 200~1 100 nm and 900~1 700 nm were acquired, respectively. Two-classification qualitative discrimination and six-classification quantitative detection methods were used to establish the support vector machine (SVM) and partial least squares (PLS) qualitative and quantitative discrimination models, respectively. Subsequently, the six-classification optimal models were used for prediction based on two spectral bands. The electronic nose detected and identified the six groups through the odor difference. The contents of volatile aroma components such as terpenes, aromatic compounds, and organic sulfides in mutton were higher than those in duck. The PLS models based on two-classification methods and spectral data of two bands were superior to the SVM models, and the total discriminant accuracy was more than 96%. The best spectral pretreatment

引文格式:

张春娟,郑晓春,古明辉,等.基于电子鼻和可见/近红外光谱技术的羊肉真实性鉴别[J].现代食品科技,2022,38(12):383-393

ZHANG Chunjuan, ZHENG Xiaochun, GU Minghui, et al. Authenticity identification of mutton based on electronic nose and visible/near-infrared spectroscopy [J]. Modern Food Science and Technology, 2022, 38(12): 383-393

收稿日期: 2022-02-16

基金项目:中央级公益性科研院所基本科研业务费专项(S2021JBKY-14);国家农业科技创新工程项目(CAAS-ASTIP-2020-IFST-03)

作者简介:张春娟(1997-),女,硕士研究生,研究方向:肉品无损快速检测技术,E-mail: zhangcj4448@163.com

通讯作者: 陈丽(1986-), 女, 博士, 副研究员, 研究方向: 肉品质评价与检测技术, E-mail: chenliwork@126.com

现代食品科技

method was multiplicative scatter correction, and the final optimal model predicted well. In summary, an electronic nose combined with visible/near infrared spectroscopy can effectively identify the mutton samples adulterated with duck, thus providing technical support for rapid and nondestructive identification of mutton adulteration.

Key words: mutton authenticity; electronic nose; visible/near-infrared spectroscopy technology; qualitative identification; quantitative detection

随着我国居民生活水平的提高和消费观念的转变,肉品消费在居民饮食中所占的比例逐年升高^[1,2], 而羊肉因其脂肪和胆固醇含量低,蛋白质、氨基酸、 钙钾等矿物质含量高倍受消费者的青睐。据农业农村部 和畜牧兽医局监测信息处统计^[3,4],2021年8月全国羊肉 平均价格为每千克81.91元,而鸭肉平均价格在每千克 15~16元。因此,不法商家利用消费者难以识别羊肉真 假、优劣的漏洞,为了降低成本、谋求更高利润,制 作掺假羊肉并流入市场,不仅对消费者经济利益造成 损害,还扰乱了市场秩序。因此,亟需一种快速无损 的检测方法,为羊肉质量保障提供技术支撑。

肉品真实性检测方法以形态学鉴别法[5]、蛋白质分 析法^[6,7]、DNA 分析法^[8-10]等传统方法为主,检测速度 慢、破坏性大、操作技能要求高。新型的方法利用无 损分析技术进行肉品鉴别,主要包括光学技术[11-13]、电 学技术[1416]、核磁技术[17-19]等。He 等[17]综述了无损分 析技术在食品真实性检测中的应用,发现近红外光谱、 拉曼光谱和电子鼻技术在食品掺假检测上具有优势。 近红外光谱技术是近年来发展成熟的一种定性定量分 析技术,可以穿透和收集样品的结构和检测样品组成 信息,其核心是建立稳定且准确的预测模型[20],已广 泛应用在肉品真实性鉴别上。Noha 等^[21]采用近红外光 谱技术实现了新鲜和冻融牛肉糜中不同掺杂物的检测 和定量,所建 PLSR 模型准确率分别为 96%、93%。电 子鼻由多个传感器阵列组成,也被广泛应用于食品真 伪的鉴别。张娟等[22]利用电子鼻对牛肉中掺入猪肉进 行定性和定量研究,多层感知神经网络分析中决定系 数 R²达到 0.999 3。近年来,随着光电技术的迅速发展, 多种技术结合在一定程度上起到互补作用,提高鉴别 的准确性。王彬[23]以不同品种及产地的鸡蛋为研究对 象,建立了基于电子鼻及近红外光谱的鸡蛋品种及产 地鉴别模型,对品种和产地的判别准确率均为100%。 史屹君等[24]设计并开发出基于近红外吸收光谱技术的 电子鼻,结果对白醋、米醋和苹果醋的识别准确率达 到100%,实现了高精度、高稳定度和高分辨率的设计 目标。上述研究表明,利用电子鼻结合可见/近红外光 谱技术可以应用于食品真实性鉴别,具有快速、简便、 高效和环保的优点,但目前对于肉眼难以区分的羊肉 掺鸭肉真实性检测还鲜有报道。

鉴于此,为提高肉品真实性鉴定的准确性,本研 究以掺入不同比例鸭肉的羊肉肉糜为研究对象,利用 电子鼻结合可见/近红外光谱技术对羊肉中掺入不同比 例鸭肉样品的气味指标及光谱特征信息进行数字化描 述,并进行羊肉真实性定性鉴别和羊肉中掺入鸭肉含 量的定量检测,旨在为羊肉真实性判别提供技术依据。

1 材料与方法

1.1 试验材料

实验用羊腿肉、鸭腿肉购买于北京市海淀区某超市,置于装有冰袋的泡沫箱中,30min内运回实验室。将羊腿肉剔除表皮的筋膜、脂肪和血块,鸭腿肉剔骨、去脂肪、筋膜等并切块,按照鸭肉加入量占样品总质量的比例分为6组,分别是0%、20%、40%、60%、80%和100%(*m/m*)羊肉组,使用绞肉机搅碎,350W搅碎15s,重复2次(间隔10s左右手动混匀),取搅碎的样品平铺、压实于直径为90mm的培养皿中,每组制备24个,共制备144个样品用于模型构建。

后期又重新采样按照上述实验过程每个掺比制作 5个样本,共制作了30个样本用于外部验证实验。

1.2 仪器与设备

QSJ-C04K3 型绞肉机(额定功率350W),小熊电器股份有限公司;esto 205 便携 pH 计,德国德图公司; CM-600d分光测色计,日本株式会社;PEN 3.5 型电子 鼻(含10个金属氧化物传感器阵列,各传感器的名称 及性能描述见表1),德国 Airsense 公司;实验室搭建 的近红外光谱采集系统:包括 AvaSpec-2048x14 型光谱 仪(自建功率20W 卤钨灯的高效光源、发射采集一体 式大区域反射光谱探头,检测波段200~1100 nm,积分 时间为100 ms,平均次数为5,采集波长间隔为0.573 nm, 可获得1608个波长点的数据,光谱分辨率最小为 0.05 nm),荷兰 Avantes 公司;Micro NIR 微型近红外 光谱仪(含双集成真空钨灯光源,分光器:线性渐变滤 光片 LVF,检测波段900~1700 nm,积分时间为38 ms, 扫描次数为50,采集的波长间隔为6.194 nm,可获得 125个波长点数据),美国 JDSU 公司。

Table 1 PEN	3.5 Electronic nos	e sensor array and its performance cha	racteristics
传感器序号	传感器名称	性能特点	参考物质
S1	W1C	对芳香成分灵敏	甲苯
S2	W5S	对氮氧化物很灵敏	二氧化氮
S3	W3C	对氨水、芳香类化合物灵敏	苯
S4	W6S	对氢气敏感	氢气
S5	W5C	对烷烃、芳香型化合物敏感	丙烷
S6	W1S	对甲烷敏感	甲烷
S7	W1W	对硫化物、萜烯类敏感	硫化氢
S8	W2S	对乙醇、部分芳香型化合物敏感	一氧化碳
S9	W2W	对有机硫化物敏感	硫化氢
S10	W3S	对烷烃敏感	甲烷

1.3 试验方法

1.3.1 色差值、pH 值的测定

分别使用色差计和 pH 计测量样品 L*、a*、b*值 和 pH 值。其中 L*代表亮度、a*代表红度、b*代表黄 度。每个样品测量不同位置色差值 4 次、pH 值 3 次, 取其平均值作为该样品的色差值和 pH 值。

1.3.2 电子鼻数据采集

称取(4.00±0.05)g肉糜样品于20mL顶空瓶中, 室温静置30min后顶空进样测量(静止30min的目的 是使顶空瓶中产生足够的挥发性化合物)。电子鼻试验 参数设置:样品准备时间5s,检测时间60s,测量计 数1s,自动调零时间10s,清洗时间180s,内部流量 300mL/min,进样流量300mL/min。

1.3.3 可见/近红外光谱数据的采集

在实验室温度为(25±1)℃下,分别使用 AvaSoft 8.7 和 MicroNIR 1.5.7 软件采集 200~1 100 nm 和 900~ 1 700 nm 的可见/近红外光谱数据。每个样品采集表面 3 个不同的点,取其平均值作为该样品的光谱数据,同 一样品两个波段光谱数据采集间隔不超过 2 min。

1.4 数据处理方法

所有数据使用 Excel 2013 软件整理,采用 IBM SPSS 19.0 中的 ANOVA 进行方差分析, Duncan's 多重 检验进行差异显著性分析。采用 Origin 2019 和 SIMCA14.0 软件对电子鼻数据进行主成分分析 (Principal Component Analysis, PCA)和正交偏最小 二乘判别(Orthogonal Partial Least Squares Discriminant Analysis, OPLS-DA)分析。采用 Matlab 2021a 对光谱 数据绘图,利用 PLS toolbox 工具箱的支持向量机 (Support Vector Machine, SVM)结合偏最小二乘法 (Partial Least Squares, PLS)对可见/近红外光谱原始 数据进行特征变量筛选,建立定性定量预测模型。

可见/近红外光谱数据预处理方法采用一阶导数 (First Derivative, 1st D)、标准正态变量校正(Standard Normal Variate, SNV)、多元散射校正(Multiplicative Scatter Correction, MSC)、卷积平滑(Savitzky Golay, SG)、SNV校正结合一阶导(SNV-First Derivation, SNV-1st D)和SG-SNV叠加,以校正均方根误差(Root Mean Square Error of Calibration, RMSEC)、预测均方 根误差(Root Mean Square Error of Prediction, RMSEP)、交叉验证均方根误差(Root Mean Square Error of Cross-Validation, RMSECV)、校正集决定系数 (*R*²*c*)、验证集决定系数(*R*²*p*)、交叉验证集决定系数 (*R*²*cv*)作为模型的评价指标。

2 结果与讨论

2.1 羊肉中掺入不同比例鸭肉样品的理化指标

羊肉中掺入不同比例鸭肉样品的 pH 值和色差值 分析结果见图 1。由图 1a 可知,100%羊肉组的 pH 值 显著低于 0%羊肉组,且随着羊肉占比的减小即鸭肉比 例的增加,样品的 pH 值显著升高 (*p*<0.05)。如图 1b 所示,100%羊肉组的 *L**、*a**和 *b**值均显著高于 0%羊 肉组 (*p*<0.05),这说明羊肉有更高的亮红色泽,与人 们的感官认知一致,但随着鸭肉比例的增加,80%、 60%、40%羊肉组样品的 *L**、*a**和 *b**值均无显著差异 (*p*>0.05),20%和 0%羊肉组的 *L**和 *a**值均无显著差 异 (*p*>0.05),说明羊肉中掺入鸭肉对其色差值影响不 大,肉眼更是难以区分。

图 1 羊肉中掺入不同比例鸭肉样品的 pH 值(a)、色差(b)变化

Fig.1 The changes of pH (a) and color (b) of minced mutton adulterated with different proportions duck

注:不同小写字母表示不同组样品的pH值和色差差异显著 (p<0.05)。

Fig.2 Electronic nose response signal diagram of minced mutton adulterated with 60% mutton (a) and 10 sensor response radar diagram of the samples from six groups (b)

2.2 羊肉中掺入不同比例鸭肉样品电子鼻鉴别

技术

2.2.1 不同组样品气味的电子鼻响应结果

试验对所有样品的电子鼻结果进行测定,以一个 60%羊肉组样品为例得到的电子鼻响应信号见图 2a。 由图 2a 可知,进样后电子鼻的 10 个传感器开始响应, 响应值逐渐偏离基线后又趋于平稳,多数传感器在 56 s 后稳定,因而取稳定状态 58~60 s 的平均响应值作为传 感器的特征值。由图 2b 均值后的 10 个传感器响应信 号雷达图可知,传感器 W5S、W1W、W6S、W1S、 W2S、W2W 响应信号均随鸭肉加入量升高而降低,其 中传感器 W1W 和 W5S 对各组样品的响应值具有显著 差异;传感器 W5C、W1C、W3C、W3S 对各组样品的 响应值基本一致。

2.2.2 主成分分析

为进一步分析不同组样品的气味差异,对6组样品 的电子鼻数据进行主成分分析,结果如图3所示。用椭 圆将单一样品的散点图信息特征概括起来,椭圆距离的 远近表示不同组样品之间的气味差异,前两个主成分的 贡献率分别为 86.6%和 6.8%, 累积贡献率达 93.4%, 可解释大部分原始变量的信息。根据鸭肉掺入量不同 样品分布于 6 个区域,除了两两相近组的样品有部分 重叠外,其余组的样品均无交叉,说明两两相近组的 样品产生的风味差异不明显,但随着鸭肉加入比例的 升高,不同组样品风味差异明显,这是由于掺杂比例 间隔大的组分其挥发性成分氮、硫及萜烯类等化合物 的含量差异比较大。因此利用电子鼻可以在一定程度 上对不同组样品进行区分,但精准性有待进一步提高。

Modern Food Science and Technology

2022, Vol.38, No.12

Fig.4 Score graphs (a), load graphs (b), VIP graphs (c) and model verification results (d) of minced mutton adulterated with different proportions duck

正交偏最小二乘法(OPLS-DA)是偏最小二乘法 的扩展,在查找特定样本和数据集变量的相关性方面 优势明显。利用 SIMCA 14.0 软件对羊肉中掺入不同比 例鸭肉肉糜样品进行自动拟合。通过自动拟合建立模型 M1,模型 R²X 值为 1>0.5,此模型建立成功。此外,模型的 R²Y 值为 0.669, Q² 为 0.621>0.5,且 R²Y 与Q²之间的差值<0.3,说明建立的模型良好,具有较好的预测能力。

由图 4a 可知,各组样品均在 95%置信区间内,不 同组样品均可以较好地聚为一类。图 4b 表示第一、二 主成分中各指标与不同组样品的相关性, X 变量与 Y 变量越靠近,相关性越高。W3S、W2S、W1S、W6S、 W5S、W1W、W2W 传感器与 100%、80% 羊肉组具有 相关性;W1C、W3C、W5C 传感器与所有样本都靠得 较远,说明W1C、W3C、W5C无法将6组样品区分开, 即羊肉中掺入不同比例鸭肉对羊肉中部分芳香族化合 物、氨类、烯烃类化合物的影响不大。权重重要性排 序(Variable Importance for the Projection, VIP)图4c 展示了每个变量对样品分类的贡献大小,将 VIP>1 且 p<0.05 的变量作为显著性差异成分。传感器 W5S、 W1W、W1S的 VIP 值大于 1, 说明不同组样品中主要 差异成分为硫化物、萜烯类和氮氧化物。使用有监督 模式的 OPLS-DA 进行分析时容易产生过拟合的现象, 因此可以通过 200 次响应的置换检验见图 4d 来验证 OPLS-DA 模型是否过拟合,模型的 R²回归线在 Y 轴的 截距<0.5, O²与Y轴的截距为负,说明模型没有过拟合。

综上所述,利用羊肉中掺入不同比例鸭肉样品的整体气味信息对不同组样品判断,发现不同组样品气味存在一定差异。羊肉中挥发性香气成分如萜烯类、芳香类、有机硫化物等物质的含量高于鸭肉,这主要是由于挥发性含氮和含硫化合物均具有特有的气味和较低的气味阈值^[25],在肉风味的形成中起着至关重要的作用。因此,电子鼻能较好的区分出羊肉中掺入鸭肉源成分。

2.3 羊肉中掺入不同比例鸭肉样品可见/近红

外光谱分析技术

2.3.1 基于 200~1 100 nm 和 900~1 700 nm 波段 下羊肉中掺入不同比例鸭肉样品光谱特征

图 5 不同波段羊肉中掺入不同比例鸭肉样品的光谱特征变化 Fig.5 Spectral characteristics of minced mutton adulterated with different proportions duck in the wavelength range of 370~1 050 nm and 900~1 700 nm

注: a 表示 370~1 050 nm 波段下不同组样品的原始光谱; b 表示 900~1 700 nm 波段下不同组样品的原始光谱; c 表示 370~1 050 nm 波段下不同组样品均值后的光谱; d 表示 900~1 700 nm 表 2 不同分类体系下主肉中# 波段下不同组样品均值后的光谱。

本研究中使用的 Ava 光谱仪的实际波长范围为 200 nm 至1100 nm,由于采集的光谱数据两端噪声较 大且信号弱,因此选择370 nm 至1050 nm 范围内的可 用数据。144个样品在 370~1 050 nm 和 900~1 700 nm 波段下的原始反射光谱曲线如图 5a、5b 所示,均值后 的光谱如图 5c、5d 所示。从图 5a 中可以看出,所有样 品出现光谱吸收峰的位置大致相同,均在430、560、 595、750 和 980 nm 附近出现反射波谷(吸收峰),其 中 430、560、595 和 750 nm 附近的吸收峰在可见光范 围内出现,这与血红蛋白、脱氧肌红蛋白和氧化肌红 蛋白等对光的吸收有关[26,27],而这些物质正是肉品呈现 红色的原因^[28]。从图 5b 中可以看出,样品的主要吸收 峰出现在 980、1 200 和 1 450 nm, 其中 980 nm 和 1450 nm 处吸收峰源于 O-H 键的倍频吸收, 而 1200 nm 处吸收峰源于 C-H 键的振动吸收[29]。不同样品在相同 的波长处,虽然呈现相同的吸收峰但反射率不同,表 明样品中化学组分含量不同。从图 5c 中可以看出在 800~1000 nm 范围内随着羊肉占比的减小其光谱反射 率增大,但在900~1700 nm的光谱图 5d 中仅 0% 羊肉 组和100%羊肉组光谱图反射率差异明显,其他组无明 显变化规律。

2.3.2 370~1 050 nm 波段下羊肉中掺入不同比 例鸭肉样品判别模型构建

2.3.2.1 SVM-C 与 PLS-DA 定性模型

将采集到的光谱数据进行 2 分类和 6 分类建模分 析,其中 2 分类是将样品分为 0%~80%的掺伪羊肉组 和 100%纯羊肉组,6 分类是将样品按照试验分组分为 0%、20%、40%、60%、80%和 100%羊肉 6 组,如表 2 所示。以光谱数据为自变量 X,各样品的赋值为分类 变量 Y,将各样本光谱数据与其对应的分类变量对应 导入 MATLAB 中进行样本集划分,其中 75%的样品被 划分为校正集,25%的样本被划分为预测集,分别建立 SVM 和 PLS 定性定量判别模型。

2	不同分类体系下羊肉中掺。	\ 不同比例鸭肉样品的统计结果
---	--------------	------------------------

Table 2 The statistical results of samples of minced mutton adulterated with different proportions duck at different classification

	systems									
分类方法	处理组	混合体系	样品数	判别模型	判别类型					
2分类	1000/ * + /2	训练样品集	18		定性判别					
	100%丰肉组 	预测样品集	6	SVM-C PLS-DA						
		训练样品集	90							
		预测样品集	30							
6分类	0%羊肉组、20%羊肉组、40%羊肉组、 60%羊肉组、80%羊肉组、100%羊肉组	训练样品集	108	SVM-R	定量检测					
		预测样品集	36	PLS-R						

现代食品科技

Modern Food Science and Technology

2022, Vol.38, No.12

2 分类法对原始数据建立的纯羊肉组和掺伪羊肉 组 SVM-C 与 PLS-DA 定性判别结果如表 3 所示, SVM-C 定性判别结果显示,校正集判别正确率达到 100%,预测集有 1 个被错判为纯羊肉,判别正确率为 99.17%,建立的判别模型良好。对原始数据建立的 PLS-DA 定性判别结果显示,校正集有1个样本判别错误,将掺伪样品判别为纯羊肉,判别正确率为99.72%。综上,基于370~1050 nm 波段的可见/近红外光谱技术可实现纯羊肉与掺伪羊肉的快速鉴别。

表 3 基于 2 分类法建立的 SVM-C 与 PLS-DA 模型定性判别结果(370~1 050 nm)

Table 3 The qualitative discrimination results of the SVM-C and PLS-DA model based on 2-classification method within the wavelength

			rang	e of 370~1	050 nm			
机则控制	石外田六计	* 미리	出土地	正确判别个数		判别正确率		兴州时工政变/0/
刊加候空 顶处埋力法		尖게	件争致	校正集	预测集	校正集/%	预测集/%	忌利剂止确平/%
SVM-C None	Nono	纯羊肉组	24	18/18	6/6	100	100	00.17
	掺伪羊肉组	120	90/90	29/30	100	96.67	99.17	
DICDA Nono		纯羊肉组	24	18/18	6/6	100	100	00.72
PLS-DA	None	掺伪羊肉组	120	89/90	30/30	98.89	100	99.12

注: 表中 None 表示原始光谱, 加粗的字体表示筛选的最优模型, 下同。

表 4 不同光谱预处理方法建立的 6 分类不同组样本 SVM-R 和 PLS-R 定量模型性能(370~1,050 nm)

 Table 4 The performance of SVM-R and PLS-R quantitative model for 6-classification method of different group samples established

 by different spectral pretreatment methods within the wavelength range of 370~1,050 nm

小山共三回	预处理	校正集			预测集			交叉	交叉验证集	
判别祦空	方法	$R^2_C/\%$	RMSEC	比例	$R^2_{P}/^{0}/_{0}$	RMSEP	比例	R^2_{CV} /%	RMSECV	
	None	99.63	0.10	108/108	99.08	0.19	36/36	96.52	0.32	
	1st D	99.69	0.10	108/108	97.03	0.30	35/36	95.71	0.36	
	SNV	99.68	0.10	108/108	98.99	0.17	36/36	97.51	0.27	
SVM-R	MSC	99.68	0.10	108/108	98.96	0.18	36/36	97.32	0.28	
	SG	99.21	0.15	107/108	98.40	0.26	35/36	95.88	0.35	
	SNV-1st D	99.61	0.11	108/108	96.66	0.3	35/36	95.51	0.36	
	SG-SNV	99.45	0.13	107/108	99.11	0.18	36/36	96.62	0.31	
	None	99.47	0.12	107/108	98.17	0.23	35/36	96.21	0.33	
	1st D	98.95	0.18	107/108	96.39	0.33	35/36	91.25	0.52	
	SNV	99.52	0.12	107/108	98.31	0.22	35/36	96.60	0.32	
PLS-R	MSC	99.66	0.10	108/108	98.20	0.23	35/36	96.67	0.31	
	SG	98.51	0.21	106/108	97.67	0.27	35/36	95.22	0.38	
	SNV-1st D	99.52	0.12	107/108	96.29	0.33	35/36	92.22	0.49	
	SG-SNV	98.67	0.20	107/108	97.78	0.26	35/36	95.42	0.37	

Fig.6 Prediction results of the optimal SVM-R and PLS-R model based on the wavelength range of 370~1 050 nm

Modern Food Science and Technology

2022, Vol.38, No.12

2.3.2.2 SVM-R 和 PLS-R 定量模型

光谱数据在采集过程中会产生基线漂移、散射、 噪音等问题,严重影响建模的精确度,采用适当的光 谱预处理方法会有效提高模型的精确度。表4比较了 不同预处理方法处理的6分类法建立的不同组样本 SVM-R和PLS-R定量模型,与原始光谱建模性能相比, 经过SNV处理后,SVM-R模型性能最佳(见图6a), 其 R²c和 R²P分别为99.68%、98.99%。经过MSC处理 后构建的PLS-R模型效果最优(见图6b), R²c和 R²P 分别为99.66%、98.20%,所建模型预测值与真实值相 关性较强。因此,利用 370~1050 nm 波段的可见/近红 外光谱技术可实现羊肉中鸭肉掺入量的快速检测。

2.3.3 900~1700 nm 波段下羊肉中掺入不同比 例鸭肉样品判别模型构建

2.3.3.1 SVM-C 与 PLS-DA 定性模型

2 分类法对原始数据建立的纯羊肉组和掺伪羊肉 组 SVM-C 与 PLS-DA 定性判别结果如表 5 所示,

SVM-C 与 PLS-DA 定性判别结果显示校正集和预测集 均判别正确,其判别正确率均达到 100%,说明建立的 模型良好。结果表明,基于 900~1 700 nm 波段的近红 外光谱技术可实现纯羊肉与掺伪羊肉的快速鉴别。 2.3.3.2 SVM-R 和 PLS-R 定量模型

不同组样品经过不同预处理方法处理后建立的 6 分类法 SVM-R 和 PLS-R 定量模型如表 6 所示,与原始 光谱建模性能相比,经过 MSC 处理后构建的 SVM-R 模型性能最佳(图 7a),其 *R*²*c* 和 *R*²*p*分别为 96.10%、 93.96%,在建立的所有 SVM-R 模型中具有最高的决定 系数。经过 MSC 处理后构建的 PLS-R 模型效果最优(见 图 7b),其 *R*²*c* 和 *R*²*p*分别为 98.24%、94.60%,在建立 的所有 PLS-R 模型中具有最高的决定系数,所建模型 预测值与真实值相关性较强。因此,可以利用 900~ 1 700 nm 波段的近红外光谱技术实现羊肉中鸭肉掺入 量的快速检测。

表 5 基于 2 分类法建立的 SVM-C 与 PLS-DA 定性判别结果(900~1 700 nm)

Table 5 The qualitative discrimination results of the SVM-C and PLS-DA model based on 2-classification method within the wavelength

			rang	ge of 900~1	l 700 nm		*	
机则横刑	石仙四六计	类别	样本数·	正确判别个数		判别正确率/%		当期二十五年/0/
判刑候空 顶处理力法	顶处理力法			校正集	预测集	校正集	预测集	忠判刑正确平/%
SVM-C None	纯羊肉组	-24	18/18	6/6	100	100	100	
	掺伪羊肉组	120	90/90	30/30	100	100		
PLS-DA None	纯羊肉组	24	18/18	6/6	100	100	100	
	inone	掺伪羊肉组	120	90/90	30/30	100	100	100

表 6 不同光谱预处理方法建立的 6 分类不同组样本 SVM-R 和 PLS-R 定量模型性能(900~1 700 nm)

Table 6 The performance of SVM-R and PLS-R quantitative model for 6-classification method of different group samples established

by different spectral pretreatment methods within the wavelength range of 900~1 700 nm

	预处理方法	校正集			预测集			交叉验证集	
判别模型		R^2C	RMSEC	比例	R^{2}_{P}	RMSEP	比例	R^2_{CV}	RMSECV
	None	93.23%	0.45	101/108	90.38%	0.54	33/36	83.72%	0.69
	1st D	78.35%	0.82	85/108	78.13%	0.82	28/36	73.94%	0.89
	SNV	86.68%	0.64	94/108	84.22%	0.68	30/36	71.98%	0.82
SVM-R	MSC	96.10%	0.34	104/108	93.96%	0.43	34/36	88.02%	0.59
	SG	90.40%	0.53	98/108	86.90%	0.63	31/36	81.64%	0.73
	SNV-1st D	45.62%	1.48	49/108	55.58%	1.48	20/36	39.64%	1.51
	SG-SNV	83.34%	0.71	90/108	81.35%	0.74	29/36	78.08%	0.81
	None	97.29%	0.28	105/108	92.91%	0.54	33/36	90.47%	0.54
	1st D	91.69%	0.49	99/108	88.75%	0.69	32/36	85.10%	0.67
	SNV	96.53%	0.32	104/108	93.46%	0.50	34/36	90.11%	0.54
PLS-R	MSC	98.24%	0.23	106/108	94.69%	0.44	34/36	94.03%	0.42
	SG	94.42%	0.41	102/108	85.63%	0.76	31/36	80.69%	0.78
	SNV-1st D	92.26%	0.48	100/108	89.11%	0.68	32/36	85.95%	0.65
	SG-SNV	93.82%	0.43	101/108	81.02%	0.96	29/36	84.73%	0.68

整体来看,在两个波段下分别建立的定性定量模型结果中,定性判别模型效果(≥99.17%)要优于定量检测模型(≥95.37%),这是由于定性判别只是通过分析样品中光谱线波长就能确定样品所含元素的种类,即不同物质在近红外区域有丰富的吸收光谱,每种成分都有特定的吸收特征。因此在定性的基础上,定量检测是根据谱线的强度确定出样品所含各元素的含量,是定性分析的精确化。

基于两个波段数据构建的两种分类方法的SVM和 PLS 判别模型判别正确率均超过 95%, 且 PLS 模型判 别效果优于 SVM 模型, 总的判别正确率均达到 96%以 上,这是由于 SVM 其思想是寻求一个最佳分类面,可 以正确分开两类样本且使得两类分类间距最大,而PLS 法能对光谱数据进行线性组合,能在降维的同时解决 分类问题。多种光谱预处理方法中经过 MSC 处理的效 果最佳,其可以有效地消除由于样本颗粒分布不均匀 及颗粒大小不同而产生的散射对光谱的影响[30],使所 建模型性能均有所提升,因此使用 MSC 处理光谱数据 后建立的模型性能最好。基于6分类法在不同波段下 建立的最优 SVM-R 和 PLS-R 模型预测值与实际值高度 融合,线性相关系数 R 均比较高,说明预测值与实测 值比较接近,模型预测能力良好,预测可靠,可以对 未知样品进行预测,能够实现羊肉中掺入鸭肉源的定 量检测。

图 8 不同波段最优 SVM-R 和 PLS-R 模型预测值与实测值之间的 相关关系

Fig.8 Correlation between predicted value and measured value of the optimal SVM-R and PLS-R model based on the wavelength range of 370~1 050 nm and 900~1 700 nm

注: a、b 表示 370~1 050 nm 波段下最优 SVM-R 和 PLS-R 模型预测结果; c、d 表示 900~1 700 nm 波段下最优 SVM-R 和 PLS-R 模型预测结果。

Modern Food Science and Technology

为了检验上述最优模型的鲁棒性,本研究又进行 了外部验证实验。不同波段不同模型的预测集样品预 测值与实测值之间的相关关系如图 8 所示。由图 8 可 以看出,除图 8c 在 900~1 700 nm 波段下 SVM-R 模型 预测精度较差外,其他各个预测模型预测值和真实值 的相关系数 *R*² 均比较高,说明预测值与实测值比较接 近,模型预测能力良好,预测可靠,可以对未知样品 进行预测。

总体上,本研究详细的介绍了电子鼻结合可见/近 红外光谱技术鉴别羊肉中掺入不同比例鸭肉肉糜样 品,特别是在可见/近红外光谱技术上采用了2个波段、 2种分类方法以及6种光谱预处理方法进行对比分析, 此外还对最优模型进行外部验证,模型验证效果良好。

电子鼻和可见/近红外光谱两种技术在羊肉真实性 鉴别效果上发挥各自的特点和优势。电子鼻具有识别 复杂气味的能力,能够快速提供被检测样品的整体信 息及指示样品的隐含特征,通过在线分析肉品挥发性 气体成分的变化,能够区分出掺伪羊肉。而可见/近红 外光谱技术是利用不同比例掺假肉样中的有机化合物 在可见/近红外光谱区内对光的吸收不同进而鉴别掺伪 羊肉,可以定性判别和定量检测,弥补了电子鼻技术 在掺假检测中无法定量的相对劣势。

3 结论

综上所述,本研究采用电子鼻结合可见/近红外光 谱技术对羊肉中掺入不同比例鸭肉肉糜样品的气味指 标进行数字化描述,并对光谱特征信息进行定性鉴别 和定量检测。通过电子鼻主成分分析,说明不同组样 品气味存在差异,进一步通过 OPLS-DA 结合电子传感 器性能特点发现,羊肉中含有更高的萜烯类、芳香类、 有机硫化物等物质,表明电子鼻可以对掺杂不同比例 鸭肉的羊肉糜进行有效区分。应用可见/近红外光谱技 术对羊肉中掺入不同比例鸭肉样品进行建模分析,基 于两个波段数据构建的两种分类方法的 PLS 模型判别 效果优于 SVM 模型,总的判别正确率均达到96%以上, 且光谱数据经过 MSC 处理的效果最佳。因此本研究结 果为羊肉真实性在线无损检测、定性和定量检测提供 了技术依据,为快速、准确检测监测肉品真实性提供 了新的方法,研究结果具有一定的应用价值。

参考文献

- [1] 张德权,惠腾,王振宇.我国肉品加工科技现状及趋势[J].肉类 研究,2020,34(1):1-8
- [2] 李婷婷,张桂兰,赵杰,等.肉及肉制品掺假鉴别技术研究进展[J].食品安全质量检测学报,2018,9(2):409-415

- [3] 农业农村部畜牧兽医局监测信息处,全国畜牧总站统计信息处.2021 年 8 月全国畜产品和饲料价格情况[J].中国饲料,2021, 30(18):1-4
- [4] 肖海峰,康海琪,张俊华,等.2021年上半年肉羊生产形势分析 及后市展望[J].中国畜牧业,2021,30(15):37
- [5] 李丽娜.掺假羊肉鉴别方法的研究进展[J].畜禽业,2019,30 (10):30-31
- [6] Mandli J, El Fatimi I, Seddaoui N, et al. Enzyme immunoassay (ELISA/immunosensor) for a sensitive detection of pork adulteration in meat [J]. Food Chemistry, 2018, 255: 380-389
- [7] E Renčová, Svoboda I, L Necidová. Identification by ELISA of poultry, horse, kangaroo, and rat muscle specific proteins in heat-processed products [J]. Veterinární Medicína, 2000, 45(12): 353-356
- [8] Li T T, Jalbani Y M, Zhang G L, et al. Detection of goat meat adulteration by real-time PCR based on a reference primer [J]. Food Chemistry, 2019, 277: 554-557
- [9] 李婷婷.基于 DNA 检测的羊肉掺假鉴别技术研究[D].北京: 中国农业科学院,2019
- [10] 胡悦,刘艳艳,任金瑞,等.牛、羊肉中水貂、猪、鼠混杂成分的多重荧光 PCR 鉴定方法的建立[J].农业生物技术学报, 2018,26(9):1621-1630
- Schmutzler M, Beganovic A, Bohler G, et al. Methods for detection of pork adulteration in veal product based on FT-NIR spectroscopy for laboratory, industrial and on-site analysis [J]. Food Control, 2015, 57: 258-267
- [12] Zheng X, Li Y, Wei W, et al. Detection of adulteration with duck meat in minced lamb meat by using visible near-infrared hyperspectral imaging [J]. Meat Science, 2019, 149: 55-62
- [13] 孙宗保,王天真,李君奎,等.高光谱成像的牛肉丸掺假检测[J]. 光谱学与光谱分析,2020,40(7):2208-2214
- [14] Han F K, Huang X Y, Aheto J H, et al. Detection of Beef Adulterated with Pork Using a Low-Cost Electronic Nose Based on Colorimetric Sensors [J]. Foods, 2020, 9(2), 193
- [15] Zaukuu J L Z, Gillay Z, Kovacs Z. Standardized Extraction Techniques for Meat Analysis with the Electronic Tongue: A Case Study of Poultry and Red Meat Adulteration [J]. Sensors, 2021, 21(2): 481
- [16] 王永瑞,柏霜,罗瑞明,等.基于电子鼻、GC-MS 结合化学计量 学方法鉴别烤羊肉掺假[J].食品科学,2021,41:1-14
- [17] He Y, Bai X L, Xiao Q L, et al. Detection of adulteration in food based on nondestructive analysis techniques: a review [J]. Critical Reviews in Food Science and Nutrition, 2021, 61(14): 2351-2371
- [18] 冷拓.基于近红外和核磁共振技术的牛肉肉糜掺假和品质

现代食品科技

Modern Food Science and Technology

指标预测[D].南昌:南昌大学,2020

- [19] 朱莹莹,赵瑜,张丽,等.低场核磁共振技术对驴肉食品的掺伪 鉴别[J].苏州市职业大学学报,2020,31(4):16-19
- [20] 陈舒畅.基于可见近红外光谱的粮食品质无损预测方法研 究[D].南京:南京财经大学,2020
- [21] Morsy N, Sun D W. Robust linear and non-linear models of NIR spectroscopy for detection and quantification of adulterants in fresh and frozen-thawed minced beef [J]. Meat Science, 2013, 93(2): 292-302
- [22] 张娟,张申,张力,等.电子鼻结合统计学分析对牛肉中猪肉掺 假的识别[J].食品科学,2018,39(4):296-300
- [23] 王彬.基于电子鼻及可见-近红外光谱的鸡蛋品种及产地鉴 别研究[D].武汉:华中农业大学,2018
- [24] 史屹君,武鸿涛,刘文皓,等.基于近红外光谱吸收技术的无线 电子鼻设计[J].红外与激光工程,2021,50:1-6
- [25] 钱文熙.滩羊肉品质研究[D].银川:宁夏大学,2005

- [26] L W Mamani-Linares, C Gallo, D Alomar. Identification of cattle, llama and horse meat by near infrared reflectance or transflectance spectroscopy [J]. Meat Science, 2012, 90(2): 378-385
- [27] Zheng X C, Li Y Y, Wei W S, et al. Detection of adulteration with duck meat in minced lamb meat by using visible near-infrared hyperspectral imaging [J]. Meat Science, 2019, 149: 55-62
- [28] De Marchi M. On-line prediction of beef quality traits using near infrared spectroscopy [J]. Meat Science, 2013, 94(4): 455-460
- [29] 何鸿举,朱亚东,王魏,等.基于近红外高光谱成像快速无损检 测注胶肉研究[J].食品工业科技,2020,41(10):219-223
- [30] 刘言,蔡文生,邵学广.近红外光谱分析方法研究:从传统数据 到大数据[J].科学通报,2015,60(8):704-713