杨树菇凝集素诱导 C57BL/6 小鼠 肝损伤和活化 CD8+T 细胞

李岳亮,陈丽琼,文钰棣,黄壮霖,曾淑娴,梁一*

(广东医科大学医学技术学院检验医学研究所,广东省医学分子诊断重点实验室,广东东莞 523808) 摘要:该研究探究了食用蘑菇杨树菇凝集素 AAL(Agrocybe aegerita lectin)对小鼠肝损伤的作用机制。通过小鼠尾静脉注射 AAL 的方式,根据不同的处理时间分 0 h、6 h 和 9 h 三个实验组,分别检测其血清 AST(天门冬氨酸氨基转移酶)和 ALT(丙氨酸氨基转 移酶),对肝脏组织切片进行 HE 染色,RT-PCR 检测肝脏细胞因子表达,流式细胞术对肝脏细胞进行分析。与 0 h 组相比,对小鼠 尾静脉注射 AAL 6 h 和 9 h 后,小鼠血清 ALT 和 AST 显著升高(p<0.001); 肝组织切片 HE 染色发现小鼠肝脏呈现明显的肝损伤, 可见坏死区和免疫细胞浸润。注射 AAL 6 h 后肝脏细胞因子 IL-10、IL-33、IL-27、IFN-y和 TNF-α 的 mRNA 表达分别升高到 25.14 倍、4.62 倍、5.14 倍、16.51 倍和 28.10 倍。6 h 组小鼠肝脏中的 T 细胞、NKT 细胞、CD8+T 细胞比例分别由 27.92%显著升高到 45.95% (p<0.05)、2.46%显著升高到 6.36%(p<0.05)、17%显著升高到 27.15%(p<0.05)。活化的 CD69+T 细胞和 CD69+CD8+T 细胞的 比例分别由 10.02%显著升高到 18.28%(p<0.01)和 5.96%显著升高到 16.20%(p<0.01)。结果表明食用菌杨树菇 AAL 可诱导小鼠 肝损伤,活化肝脏 CD8+T 细胞,显著上调细胞因子 IL-10、IL-33、IL-27、IFN-y和 TNF-α 的表达,提示食用菌凝集素成分是需要考 虑安全使用剂量的。

关键词:杨树菇;凝集素;肝损伤 文章篇号:1673-9078(2021)09-17-24

DOI: 10.13982/j.mfst.1673-9078.2021.9.0031

Liver Injury and Activation of CD8+T Cells Induced by Lectin of Agrocybe

aegerita in C57BL/6 Mice

LI Yue-liang, CHEN Li-qiong, WEN Yu-di, HUANG Zhuang-lin, ZENG Shu-xian, LIANG Yi^{*}

(Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China)

Abstract: The mechanism of the lectin in edible mushroom *Agrocybe aegerita* (*Agrocybe aegerita* lectin, AAL) underlying its action on the liver injury in C57BL/6 mice was investigated. C57BL/6 mice were injected by AAL through the tail vein. According to different times of treatment, the mice were divided into three groups: 0 h, 6 h and 9 h, and the serum ALT (Alanine aminotransferase) and AST (Aspartate aminotransferase) were measured, and the liver tissue sections were stained with HE, and the expression of liver cytokines were detected by RT-PCR, and he liver cells were analyzed by flow cytometry. At 6 h and 9 h groups, the 6 h and 9 h injection of AAL into the tail vein of mice significantly increased the serum ALT and AST (p<0.001); HE staining of liver tissue sections showed obvious liver damage, with necrotic areas and lymphocyte infiltration. Compared with the 0 h group, the serum ALT and AST of mice were significantly increased (p<0.001); the mRNA expression of cytokines IL-10, IL-33, IL-27, IFN- γ and TNF- α in the liver of the 6 h mouse group significantly increased by 25.14 times, 4.62

引文格式:

李岳亮,陈丽琼,文钰棣,等.杨树菇凝集素诱导 C57BL/6 小鼠肝损伤和活化 CD8+T 细胞[J].现代食品科技,2021,37(9):17-24

LI Yue-liang, CHEN Li-qiong, WEN Yu-di, et al. Liver injury and activation of CD8+T cells induced by lectin of *Agrocybe aegeritain* C57BL/6 mice [J]. Modern Food Science and Technology, 2021, 37(9): 17-24

收稿日期: 2021-01-08

基金项目:国家自然科学基金项目(81102850)

作者简介: 李岳亮(1993-),男,硕士,研究方向: 免疫学; E-mail: 592549061@qq.com; 共同第一作者: 陈丽琼(1996-),女,硕士,研究方向: 免疫学; E-mail: 849524897@qq.com

通讯作者:梁一(1981-),女,博士,副教授,研究方向:凝集素在肿瘤早期诊断中的应用;E-mail: liangyigdmu@163.com

现代食品科技

Modern Food Science and Technology

2021, Vol.37, No.9

times, 5.14 times, 16.51 times and 28.10 times, respectively. The proportions of T cells, NKT cells, and CD8+T cells in the liver of the 6 h group significantly increased from 27.92% to 45.95% (p<0.05), 2.46% to 6.36% (p<0.05), and 17% to 27.15% (p<0.05), respectively. The proportions of activated CD69+T cells and CD69+CD8+T cells in the liver of the 6 h group significantly increased from 10.02% to 18.28% (p<0.01), and 5.96% to 16.20% (p<0.01), respectively. These results showed that AAL induced liver injury in mice, activated CD8+T cells, and significantly upregulated the mRNA expression of the liver cytokines IL-10, IL-33, IL-27, IFN- γ and TNF- α , suggesting that there is a need to consider the dose of the fungal lectin for safe use.

Key words: Agrocybe aegerita; lectin; liver injury

食用型蘑菇具有美味、营养和药用价值高等特点, 它富含各种酶和生物活性物质,包括多糖、多萜、酚 类、活性多肽/蛋白等,其具有抗肿瘤、降血压、抗炎、 抗病毒、抗氧化、免疫调节等作用,因此,在中国、 美国、荷兰、波兰等国家倍受欢迎^[1]。

蘑菇的毒性研究主要集中在毒蘑菇中的毒伞肽、 毒蝇蕈醇、鹅膏蕈氨酸等活性作用^[2,3],食用蘑菇的毒 性报道较少。例如欧洲、北美食用已久的黄口菇,近 期被报道过量食用会造成横纹肌溶解,并伴随血浆肌 酸激酶和肝脏转氨酶的异常升高^[4]。在亚洲被称为"天 使之翼"的贝形圆孢侧耳在日本因其脱髓鞘活性引发 的脑病致死17人^[5]。还有一些食用蘑菇例如双孢蘑菇、 鸡油菌、平菇等,或可诱导突变、溶肌、脏器出血、 肝脏炎症等作用^[6]。食用蘑菇中被鉴定到的毒性成分 包括林地蘑菇、鸡油菌中有微量的毒伞肽^[6],亚稀褶 黑菇含有 cycloprop-2-ene carboxylic acid, 棕灰口蘑含 有 saponaceolide B 和 M, 平菇中含有造成高钾血症、 心动过缓的磷脂酶蛋白和抑制蛋白合成的奥来毒素 ^[7],双孢蘑菇中的 Agaritin 可诱导突变,贝形圆孢侧 耳含有一种二甲亚胺氨基酸,金针菇中含有心脏毒性 的 flammutoxin 蛋白等。毒性成分的鉴定难度也是食 用菌毒性有所争议的重要原因之一。

杨树菇 (Agrocybe aegerita) 是一种常用的食用蘑菇,之前研究发现,杨树菇水提物组分在小鼠试验中表现出致死作用,半致死剂量(LD₅₀)为8.77 g/kg,在 BALB/c 小鼠模型中,水提物组分灌胃有显著的肝脏毒性^[8]。进一步研究发现,水提物中蛋白组分主要是凝集素 AAL (Agrocybe aegerita lectin),它是由含有碳水化合物特异性识别区域的158 个氨基酸组成的分子量为18 ku 的半乳糖凝集素,具有抗肿瘤凋亡活性^[9]。AAL 可诱导 HeLa 细胞^[10]和肝癌细胞^[11]凋亡,对消化酶的作用耐受,口服或尾静脉注射具有显著的肝脏毒性^[8]。AAL 的肝脏毒性损伤机制不明,因此,本文将研究 AAL 在 C57BL/6 小鼠模型中的作用,为食用蘑菇毒性研究和安全饮食提供数据。

1 材料与方法

1.1 实验材料

C57BL/6 小鼠,雌性, SPF 级, 6~8 周龄,购于 南方医科大学,动物合格证书由广东省实验动物研究 所出具。

小鼠谷丙转氨酶(ALT)试剂盒,小鼠谷草转氨 酶(AST)试剂盒,南京建成生物工程研究所; Trizol, Invitrogen; 逆转录试剂盒(RR047A), Takara; SYBR (RR820A), Takara; Anti-mouse CD3e FITC, eBioscience; Anti-mouse NK1.1 APC, eBioscience; Anti-mouse F4/80-APC-eFluor , eBioscience ; Anti-mouse CD4-APC-eFluor, eBioscience; Anti-mouse CD8a PerCP Cyanine5.5, eBioscience; GAPDH, F: 5'-G CAGTGGCAAAGTGGAGATT-3', R: 5'-CGCTCCTG GAAGATGGTGAT-3'; IL-10, F: 5'-ACAACATACTG CTAACCGACTC-3', R: 5'-CTGGATCATTTCCGATA AGG-3'; IL-33, F: 5'-GATGGGAAGAAGCTGATGGT G-3', R: 5'-TTGTGAAGGACGAAGAAGGC-3'; IL-27, F: 5'-CTGTTGCTGCTACCCTTGCT-3', R: 5'-GGAA ACATTGGGAAGATGGTAT-3'; IFN-y, F: 5'-AGCAA CAACATAAGCGTCAT-3', R: 5'-CCTCAAACTTGGC AATACTC-3': TNF-α, F: 5'-CTACTGAACTTCGGGG TGAT-3', R: 5'-CAGGCTTGTCACTCGAATT-3'.

1.2 实验方法

1.2.1 杨树菇凝集素的制备

杨树菇子实体购买自福建省三明食用菌研究所, 将之研磨成干粉后,通过浸泡、过滤和离心方式收集 滤液。在滤液中加入硫酸铵至饱和度为40%,搅拌20 min 后离心弃沉淀收集上清。在上清中加入硫酸铵至 80%饱和度,沉淀60 min 后离心收集沉淀。用磷酸盐 缓冲溶液(PBS)重悬沉淀并将之透析除盐得到杨树 菇总蛋白。将杨树菇总蛋白用 0.45 μm 的滤膜进行抽 滤。安装 lactose 亲和层析柱,用 PBS 平衡柱子 30 min, 调节机器的流速为 1 mL/min。将杨树菇总蛋白溶液 (置于冰上)上样到亲和层析柱。然后用 PBS 溶液冲 洗杂蛋白,直到 280 nm 吸收线处于水平。用 200 mM α-lactose PBS 缓冲液洗脱并收集目的蛋白 AAL,并在 PBS 缓冲液中充分透析,真空干燥后于-20℃保存。 1.2.2 AAL 诱导 C57BL/6 小鼠肝脏损伤

将 AAL 溶解在无菌 PBS 中, 配制成 2.5 mg/mL 的 AAL 溶液。根据不同处理时间 0h、6h 和 9h 把小 鼠分为三组,每个处理组的小鼠数量 n=7。0h 组注射 无菌 PBS 溶液,6h 组和 9h 组按照 2.5 mg/kg 的剂量 将 AAL 尾静脉注射到 C57BL/6 小鼠体内处理 6h 和 9h。三个时间点进行眼球采血,同时处死小鼠。血清用 于检测转氨酶 ALT 和 AST 的活性,取小鼠部分肝脏 组织做石蜡组织切片,部分肝脏组织用于提取肝脏总 RNA 和单个核细胞分离、染色。

1.2.3 小鼠血清 ALT 和 AST 的检测

使用南京建成生物工程研究所的 ALT 和 AST 试 剂盒,按照试剂盒说明书分别测定小鼠血清中的 ALT 和 AST 两项指标。

1.2.4 小鼠肝脏组织石蜡切片与苏木精-伊红 染色法(HE染色)

小鼠眼球取血处死后,取肝脏组织,剪下一块组 织(1.5 cm×1 cm×0.5 cm)置于包埋盒中,通过脱水、 浸蜡、包埋、冰冻等操作后,用组织切片机将肝脏组 织切成 3 µm 厚的薄片。制作好的组织切片用 HE 染色 后,进行脱水、透明、封片等操作,以便在镜下观察。 1.2.5 Real-time PCR 测定小鼠肝脏组织细胞 因子表达

用 Trizol 法提取肝组织中的 RNA, 按照 Takara 的逆转录试剂盒说明书将肝脏组织中的 RNA 逆转录 为 cDNA。按照 Takara 的 SYBR (RR820A)试剂说 明书,用荧光定量 PCR 仪检测并分析 GAPDH、IL-10、IL-33、IL-27、IFN-γ和 TNF-α 的 mRNA 表达水平。 1.2.6 小鼠肝脏单个核细胞表面抗原染色

小鼠眼球取血处死后,取肝脏组织。用生理盐水 灌注清洗肝脏组织,并通过切块、研磨、胰酶消化和 过滤将提取肝脏细胞。将提取的细胞用 RPMI1640 培 养基重悬并 800×g 离心 5 min。重复上述步骤一次后 弃上清,用 15 mL 33% Percoll 分离液将离心后的细胞 沉淀重悬。室温条件下,800×g 离心 30 min,弃上清。 往细胞沉淀中加入1 mL RBC lysing buffer 破碎红细 胞,3 min 后加入9 mL RPMI1640 培养基终止反应。 800×g 离心 5 min 后用 RPMI1640 培养基重悬,重复 上述步骤一次后获得单个核细胞。

设置空白对照管和单标抗体管。在 100 μL 重悬细 胞 液 中 加 入 Anti-mouse-NK1.1-APC 、 Anti-mouse-CD3e- FITC、Anti-mouse-NK1.1-APC、 Anti-mouse-CD69-PE, Anti-mouse-F4/80-APC-eFluor、 Anti-mouseCD4-APC-eFluor、Anti-mouse-CD8a-PerCP Cyanine5.5, 4 ℃避光孵育 30 min。加入 3 mL PBS, 1500 r/min 离心 5 min 弃上清收集细胞,重复上述步骤 一次,最后加入 200 µL 2%多聚甲醛,避光 4 ℃保存, 24 h 内上机分析。

1.3 统计学方法

用 SPSS 统计软件分析数据。小鼠血清 ALT、AST 检测结果, RT-PCR 结果和流式细胞术结果均用(x±s) 表示, p 值小于 0.05 具有统计学意义。

2 结果与讨论

Fig.1 Tail intravenous injection of AAL induced liver injury in C57BL/6 mice

注:用 2.5 mg/kg 剂量浓度 AAL 尾静脉注射 C57BL/6 小 鼠 0 h、 6 h 和 9 h 后, (a) 血清中的 ALT 和 AST 活性, (b)

现代食品科技

2021, Vol.37, No.9

AST/ALT 比值, n=7, ***p<0.001, ****p<0.0001; (c)分别 取小鼠的肝脏和胰脏, (d)进行组织切片与 HE 染色, 组织切 片的放大倍数均为 400 倍。

2.1 尾静脉注射AAL诱导C57BL/6小鼠肝脏损伤

对 C57BL/6 小鼠静脉注射 AAL (2.5 mg/kg), 在处理后的0h、6h、9h三个时间点通过眼球采血, 其血清用于检测转氨酶活性,同时处死小鼠取其肝脏 做石蜡组织包埋、切片及 HE 染色。结果如图 la、lb 所示, AAL 处理 6h 后, ALT 的测定值升高了 134 倍, AST 的测定值升高了 23 倍。处理 9 h 后, ALT 的测 定值升高了 94 倍, AST 的测定值升高了 19 倍。6 h 组和9h组中的AST与ALT比值均小于1,提示AAL 的处理可能引起非酒精性脂肪肝疾病。与对照组相比, AAL 处理6h和9h的C57BL/6小鼠肝脏均出现肉眼 条件下明显的肝损伤表征,包括肝脏淤血变暗和肿大; 另外脾脏有变黑、肿大和淤血的现象(图 1c)。在 6 h 和9h两个实验组之间,肝脏与脾脏的肉眼观察变化 差异不明显。从肝脏组织 HE 染色结果 (图 1d) 可见, 正常肝脏组织肝细胞以中央静脉为中心放射状排列形 成肝板,相邻肝板之间的空隙为肝窦,是肝小叶内血 液流通的管道。AAL 处理6h后, 肝脏组织肝窦内出 现红细胞淤积,肝实质细胞皱缩,连接消失,与周围 的细胞脱离,大量肝细胞开始空洞化,坏死区还可见 大量淋巴细胞、中性粒细胞等免疫细胞浸润。9h组的 肝脏组织的肝窦红细胞淤积、肝细胞空洞化及免疫细 胞浸润的程度减弱。

凝集素是一类广泛存在于真核细胞和细菌、病毒、 真菌中的蛋白质或糖蛋白,能够保护或促进肝损伤。 高剂量的槲寄生凝集素在小鼠模型中表现出致死性, 低剂量的槲寄生凝集素具有肝脏毒性,并诱导血清 AST 和 ALT 显著升高^[12]。接骨木果实中的核糖体灭 活凝集素 Ebulin f在年老小鼠模型中表现出致死活性, 诱导包括肝脏坏死等消化器官的衰竭^[13]。巴西青香木 叶提取物及凝集素在荷 S180 小鼠模型中均有抗肿瘤 活性,但会引起肝脏组织的液泡化和脂肪肝^[14]。另外, 常用于诱导小鼠肝脏损伤模型的刀豆蛋白 Con A (concanavalin A)也是一类凝集素^[15]。结合研究结果 提示,在食用或使用天然产物作为药物时,要注意其 中是否有凝集素成分,探讨其安全使用剂量。

2.2 AAL 调节 C57BL/6 小鼠肝脏细胞因子的

mRNA 表达

检测 C57BL/6 小鼠在尾静脉注射 AAL 后 6 h 和 9 h

肝脏组织五种细胞因子 IL-10、IL-33、IL-27、IFN-γ和TNF-α的mRNA表达变化情况。如图2所示,与对照组相比,AAL处理6h和9h组的肝脏IL-10、IL-33、IL-27、IFN-γ和TNF-α的mRNA表达水平都显著升高(p<0.001)。6小时组中,细胞因子的表达分别升高到25.14倍(IL-10)、4.62倍(IL-33)、5.14倍(IL-27)、16.51倍(IFN-γ)、28.10倍(TNF-α)。9小时组中,细胞因子的表达分别升高到7.60倍(IL-10)、3.22倍(IL-33)、1.52倍(IL-27)、12.78倍(IFN-γ)、10.99倍(TNF-α)。

of C57BL/6 mice

注: 以 GAPDH 作为内参, 0 h 组的测定值设为 1。n=5, ***p*<0.01。

肝脏细胞因子的表达水平与肝损伤机制密切相 关。肝损伤上调了 IL-10 表达水平, 增强巨噬细胞的 吞噬功能,促进肝脏损伤的修复[16]。另一方面,肝脏 中的巨噬细胞被 IFN- γ 诱导活化为 M1, 分泌 TNF- α 、 IL-1 β 和 IL-12, 促进肝细胞凋亡和肝纤维化^[17]。同时, 肝损伤后高表达的 IL-27 促进炎症反应,进而上调 TNF-α 和 IL-6 的表达水平^[18]。IL-33 在不同的肝脏损 伤模型的作用机制不同,这可能与不同的免疫病理类 型相关。在病毒性肝炎模型中, IL-33 通过 Th2 细胞 /IL-13/STAT6 诱导免疫抑制性中性粒细胞的发挥肝脏 保护作用^[19]。外源性 IL-33 给药处理降低 Con A 诱导 的肝损伤小鼠的 IFN-γ和 TNF-α 表达水平,减轻肝脏 炎症^[20];在 Con A 诱导的肝损伤小鼠模型中,活化的 CD8+T 细胞会损伤肝细胞,后者表达的 IL-33 促进淋 巴细胞 IL-5 等炎症因子分泌^[21]。另外在对乙酰氨基酚 诱导的肝损伤小鼠模型中,阻断 IL-33 后影响肝脏炎 症因子的释放从而减轻肝脏损伤^[22]。研究结果表明 AAL 诱导小鼠肝损伤后,细胞因子 IL-10、IL-33、 IL-27、IFN- γ 和 TNF- α 均参与肝损伤机制。

2.3 NKT 细胞和 CD8+T 细胞参与了 AAL 诱

导 C57BL/6 小鼠的肝脏损伤

为探究 AAL 诱导 C57BL/6 小鼠肝损伤的作用机制,通过分离肝窦单个核细胞结合流式细胞术,检测 尾静脉注射 AAL 后的 C57BL/6 小鼠肝脏各类免疫细胞的变化情况。AAL(2.5 mg/kg)尾静脉注射 C57BL/6 小鼠,0h、6h、9h 分离小鼠肝脏的单个核细胞,使用 anti-CD3、anti-NK1.1 和 anti-F4/80 荧光抗体染色结 合流式细胞仪检测,通过设门(图 3a、b),统计 T 细胞(CD3+T)、NKT 细胞(CD3+NK1.1+T)、Kupffer 细胞(F4/80+)和 NK 细胞(CD3-NK1.1+)占肝脏单 个核细胞比例。结果表明,与对照组相比,6h 组和 9 h组小鼠肝脏T细胞比例由27.92%显著升高到45.95% 和 47.86%(p<0.05),NKT 细胞的比例由 2.46%显著 升高到 6.36%和 6.17%(p<0.05),而 Kupffer 细胞和 NK 细胞的比例没有显著改变(图 3c)。

进一步用 anti-CD3、anti-CD4 和 anti-CD8 荧光抗 体染色结合流式细胞仪检测,通过设门(图 3d、e), 统计 CD4、CD8 T 细胞占单个核细胞的比例,以反映 T 细胞亚群的变化。结果表明,与对照组相比,6h 组 小鼠肝脏 CD8+T 细胞比例由 17%显著升高到 27.15% (p<0.05),而 CD4+T 细胞的比例没有明显的改变(图 3f)。

正常肝脏中 30%为非肝实质细胞,包括约 50%的 内皮细胞、20%的 Kupffer 细胞和 25%的淋巴细胞等 ^[23,24]。在 Con A 诱导的急性肝损伤模型中,Kupffer 细胞、CD4+T 细胞、Treg 细胞和 NKT 细胞均参与其 中^[25-27],且 CD4+T 细胞是主要的效应细胞。这与 AAL 主要诱导 CD8+T 细胞增多不同。另一关于 AAL 诱导 小鼠肝损伤的研究发现,AAL 可诱导 T 细胞和 NKT 细胞的数量比例增加^[28],这与该研究结果是一致的。

2021, Vol.37, No.9

Fig.3 The changes in number of NKT cells and CD8+T cells

after AAL injection

注: (a) T 细胞、NK 细胞和 NKT 细胞设门图, (b) Kupffer cells 设门图, (c) T 细胞、NK 细胞、NKT 细胞和 Kupffer cells 细胞比例柱状图。(d) CD4+T 细胞设门图, (e) CD8+T 细胞设门图, (f) CD4+T 细胞和 CD8+T 细胞细胞比例柱状图。 n=5, *p<0.05, **p<0.01。

2.4 尾静脉注射 AAL 促进了小鼠肝脏 CD8+T

细胞的活化

CD69 是 T 淋巴细胞和天然杀伤细胞(NK 细胞) 活化的表面标志^[29,30],为进一步探索小鼠肝脏免疫细 胞在 AAL 处理后的活化情况。AAL(2.5 mg/kg)尾 静脉注射 C57BL/6 小鼠,0h、6h、9h 分离小鼠肝脏 的单个核细胞,用 anti-CD3、anti-NK1.1、anti-CD4、 anti-CD8 和 anti-CD69 荧光抗体染色结合流式细胞仪 检测,结果表明,与对照组相比,6h 组的 CD69+T 细胞的比例由 10.02%显著升高到 18.28%(*p*<0.01), CD69+CD8+T 细胞的比例由 5.96%显著升高到 16.20%(*p*<0.01),CD69+CD4+T 细胞的比例由 2.27% 显著降低到 1.58%(*p*<0.01)。9h 组的 CD69+NKT 细胞的比例由 6.95%降低到 4.62%(*p*<0.05)。以上结 果说明 AAL 促进小鼠肝脏的 T 细胞和 CD8+T 细胞的 活化。 CD8+T 细胞是肝脏中主要的 T 细胞群, CD8+T 细胞的激活与急性甲型肝炎的肝损伤程度相关^[31],并且是非酒精性脂肪性肝炎的主要调节细胞^[32]。另一方面,急性肝炎的程度受 CD8+T 细胞功能的调节,但是不受其细胞寿命变化的影响^[33]。传统观点认为 CD4+T 细胞而非 CD8+T 细胞在 Con A 诱导小鼠的急性肝损伤中发挥重要作用^[34]。最新的一项 ConA 的研究发现,在 Rag2 缺陷小鼠转移 T 细胞模型中, CD8+T 细胞通过 IL33 的释放介导肝脏的严重损伤^[21]。本研究中, AAL 诱导小鼠急性肝损伤后使 CD8+T 细胞的 活化显著增加,且 IL33 的 mRNA 水平显著升高,提示在 AAL 诱导 C57BL/6 小鼠肝脏损伤中 CD8+T 细胞 的重要作用。未来仍需要通过封闭细胞试验进一步验证 CD8+T 细胞参与肝脏毒性的作用机制。

注: n=5, *p<0.05, **p<0.01。

3 结论

杨树菇凝集素 AAL 尾静脉注射 C57BL/6 小鼠, 诱导血清 ALT 和 AST 水平显著增加,肝脏组织中出 现炎症细胞浸润、肝细胞坏死空洞。其作用机制是上 调肝脏 NKT 细胞和 CD8+T 细胞的数量,活化 CD8+T 细胞,诱导肝脏细胞因子 IL-10、IL-33、IL-27、IFN-γ 和 TNF-α mRNA 的表达增加。

参考文献

- González A, Cruz M, Losoya C, et al. Edible mushrooms as a novel protein source for functional foods [J]. Food & Function, 2020, 11(9): 7400-7414
- [2] Chen X, Shao B, Yu C, et al. Energy disorders caused by mitochondrial dysfunction contribute to alpha-amatoxin-induced liver function damage and liver failure [J]. Toxicol Lett, 2021, 336: 68-79
- [3] White J, Weinstein S A, De Haro L, et al. Mushroom

poisoning: a proposed new clinical classification [J]. Toxicon, 2019, 157: 53-65

- [4] Bedry R, Baudrimont I, Deffieux G, et al. Wild-mushroom intoxication as a cause of rhabdomyolysis [J]. The New England Journal of Medicine, 2001, 345(11): 798-802
- [5] Wakimoto T, Asakawa T, Akahoshi S, et al. Proof of the existence of an unstable amino acid: pleurocybellaziridine in *Pleurocybella porrigens* [J]. Angew Chem Int Ed Engl, 2011, 50(5): 1168-1170
- [6] Nieminen P, Mustonen A M. Toxic potential of traditionally consumed mushroom species - a controversial continuum with many unanswered questions [J]. Toxins, 2020, 12(10): 639
- [7] Jo W S, Hossain M A, Park S C. Toxicological profiles of poisonous, edible, and medicinal mushrooms [J]. Mycobiology, 2014, 42(3): 215-220
- [8] Jin Y, Che T, Yin Y, et al. Lethal protein in mass consumption edible mushroom *Agrocybe aegerita* linked to strong hepatic toxicity [J]. Toxicon, 2014, 90: 273-285
- [9] Yang N, Tong X, Xiang Y, et al. Molecular character of the recombinant antitumor lectin from the edible mushroom *Agrocybe aegerita* [J]. J Biochem, 2005, 138(2): 145-150
- [10] Keller H, Yunxu C, Marit G et al. Transgene expression, but not gene delivery, is improved by adhesion-assisted lipofection of hematopoietic cells [J]. Gene Therapy, 1999, 6(5): 931-938
- [11] Liu W, Yu G, Yu W, et al. Autophagy Inhibits Apoptosis Induced by *Agrocybe aegerita* lectin in hepatocellular carcinoma [J]. Anti-cancer Agents in Medicinal Chemistry, 2017, 17(2): 221-229
- [12] Sung N Y, Byun E B, Song D S, et al. Effect of gamma irradiation on mistletoe (*Viscum album*) lectin-mediated toxicity and immunomodulatory activity [J]. FEBS Open Bio, 2013, 3: 106-111
- [13] Garrosa M, Jimenez P, Cordoba-diaz D, et al. *In vivo* toxicity of the ribosome-inactivating lectin ebulin f in elderly mice [J]. Histol Histopathol, 2018, 33(9): 979-986
- [14] De Brito Marques Ramos D, De Moura Fontes Araujo M T, De Lima Araujo T C, et al. Evaluation of antitumor activity and toxicity of *Schinus terebinthifolia* leaf extract and lectin (SteLL) in sarcoma 180-bearing mice [J]. J Ethnopharmacol, 2019, 233: 148-157
- [15] Chen A, Wang Y, Wu J, et al. Identification and characterization of dynamically regulated hepatitis-related genes in a concanavalin A-induced liver injury model [J].

Aging, 2020, 12(22): 23187-23199

- [16] Campana L, Starkey Lewis P J, Pellicoro A, et al. The STAT3-IL-10-IL-6 pathway is a novel regulator of macrophage efferocytosis and phenotypic conversion in sterile liver injury [J]. J Immunol, 2018, 200(3): 1169-1187
- [17] Feng X X, Chi G, Wang H, et al. IL-37 suppresses the sustained hepatic IFN-gamma/TNF-alpha production and T cell-dependent liver injury [J]. Int Immunopharmacol, 2019, 69: 184-193
- [18] Fan J, Zhang Y C, Zheng D F, et al. IL-27 is elevated in sepsis with acute hepatic injury and promotes hepatic damage and inflammation in the CLP model [J]. Cytokine, 2020, 127: 154936
- [19] Liang Y, Yi P, Yuan D M K, et al. IL-33 induces immunosuppressive neutrophils via a type 2 innate lymphoid cell/IL-13/STAT6 axis and protects the liver against injury in LCMV infection-induced viral hepatitis [J]. Cellular & Molecular Immunology, 2019, 16(2): 126-137
- [20] Khan H A, Munir T, Khan J A, et al. IL-33 ameliorates liver injury and inflammation in poly I:C and concanavalin-A induced acute hepatitis [J]. Microbial Pathogenesis, 2020, 150: 104716
- [21] Zhang Y, Qi C, Li L, et al. CD8(+) T cell/IL-33/ILC2 axis exacerbates the liver injury in con A-induced hepatitis in T cell-transferred rag2-deficient mice [J]. Inflamm Res, 2019, 68(1): 75-91
- [22] Antunes M M, Araujo A M, Diniz A B, et al. IL-33 signalling in liver immune cells enhances drug-induced liver injury and inflammation [J]. Inflamm Res, 2018, 67(1): 77-88
- [23] Aravalli R N, Steer C J. Immune-mediated therapies for liver cancer [J]. Genes, 2017, 8(2): 76
- [24] Wiggins B G, Aliazis K, Davies S P, et al. *In vitro* and *ex vivo* models to study T cell migration through the human liver parenchyma [J]. Methods Mol Biol, 2017, 1591: 195-214
- [25] Bi Y, Li J, Yang Y, et al. Human liver stem cells attenuate concanavalin A-induced acute liver injury by modulating myeloid-derived suppressor cells and CD4(+) T cells in mice [J]. Stem Cell Res Ther, 2019, 10(1): 22
- [26] Wang L, Zhang W, Ge C H, et al. Toll-like receptor 5 signaling restrains T-cell/natural killer T-cell activation and protects against concanavalin A-induced hepatic injury [J]. Hepatology, 2017, 65(6): 2059-2073
- [27] Erhardt A, Biburger M, Papadopoulos T, et al. IL-10, regulatory T cells, and Kupffer cells mediate tolerance in concanavalin A-induced liver injury in mice [J]. Hepatology,

2007, 45(2): 475-485

- [28] Yu W, Lan X, Cai J, et al. Critical role of IL-1β in the pathogenesis of *Agrocybe aegerita* galectin-induced liver injury through recruiting T cell to liver [J]. Biochem Biophys Res Commun, 2020, 521(2): 449-456
- [29] Notario L, Alari-pahissa E, De Molina A, et al. CD69 deficiency enhances the host response to vaccinia virus infection through altered NK cell homeostasis [J]. J Virol, 2016, 90(14): 6464-6474
- [30] Vitales-noyola M, Martínez-martínez R, Loyola-rodríguez J P, et al. Quantitative and functional analysis of CD69(+) T regulatory lymphocytes in patients with periodontal disease [J]. J Oral Pathol Med, 2017, 46(7): 549-557
- [31] Kim J, Chang D Y, Lee H W, et al. Innate-like cytotoxic function of bystander-activated CD8(+) T cells is associated

(上接第 30 页)

- [18] Flávia G C, Flávia X V, Łukasz M G, et al. Impact of dietary fat on gut microbiota and low-grade systemic inflammation: mechanisms and clinical implications on obesity [J]. International Journal of Food Sciences and Nutrition, 2018, 69(2): 1-19
- [19] Kirkegaard T, Pedersen G, Saermark T, et al. Tumour necrosis factor-converting enzyme (TACE) activity in human colonic epithelial cells [J]. Clinical & Experimental Immunology, 2004, 135(1): 146-153
- [20] Daniela G, Matteo F, Rocchina C, et al. The flavonoid compound apigenin prevents colonic inflammation and motor dysfunctions associated with high fat diet-induced obesity [J]. Plos One, 2018, 13(4): e0195502
- [21] 曾榛,莫敏敏,黄妍,等.辣木油脂对多糖诱导小鼠肠道炎症的改善作用[J].现代食品科技,2020,11:17-23,295
 ZENG Zhen, MO Min-min, HUANG Yan, et al. Ameliorative effect of *Moringa* oleifera on intestinal inflammation induced by polysaccharides in mice [J]. Modern Food Science and Technology, 2020, 11: 17-23, 295
- [22] Perkins N D. Integrating cell-signalling pathways with

with liver injury in acute hepatitis A [J]. Immunity, 2018, 48(1): 161-173.e5

- [32] Breuer D A, Pacheco M C, Washington M K, et al. CD8(+) T cells regulate liver injury in obesity-related nonalcoholic fatty liver disease [J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(2): G211-G224
- [33] Vo M, Holz L E, Wong Y C, et al. Effector T cell function rather than survival determines extent and duration of hepatitis in mice [J]. J Hepatol, 2016, 64(6): 1327-1338
- [34] Zhang H, Ju B, Zhang X, et al. Magnolol attenuates concanavalin A-induced hepatic fibrosis, inhibits CD4(+) T helper 17 (Th17) cell differentiation and suppresses hepatic stellate cell activation: blockade of smad3/smad4 signalling
 [J]. Basic & Clinical Pharmacology &Toxicology, 2017, 120(6): 560-570

NF-κB and IKK function [J]. Nature Reviews Molecular Cell Biology, 2007, 8(1): 49-62

- [23] Zhang G, Ghosh S. Molecular mechanisms of NF-kappa B activation induced by bacterial lipopolysaccharide through toll-like receptors [J]. Journal of Endotoxin Research, 2000, 6(6): 453-457
- [24] Tapping R I, Akashi S, Miyake K, et al. Toll-like receptor 4, but not toll-like receptor 2, is a signaling receptor for *Escherichia* and *Salmonella* lipopolysaccharides [J]. The Journal of Immunology, 2000, 165(10): 5780-5787
- [25] HAN Ming-yang, SONG Yu-cheng, ZHANG Xue-dong. Quercetin suppresses the migration and invasion in human colon cancer caco-2 cells through regulating toll-like receptor 4/nuclear factor-kappa B pathway [J]. Pharmacognosy Magazine, 2016, 12(Suppl 2): S237-244
- [26] Yook J S, Kim K A, Kim M, et al. Black adzuki bean (Vigna angularis) attenuates high-fat diet-induced colon inflammation in mice [J]. Journal of Medicinal Food, 2017, 20(4): 367-375