基于近红外透射光谱及多种数据降维方法的红富士 苹果产地溯源

马永杰¹, 郭俊先¹, 郭志明², 黄华³, 史勇¹, 周军¹

(1.新疆农业大学机电工程学院,新疆乌鲁木齐 830052)(2.江苏大学食品与生物工程学院,江苏镇江 212013)(3.新疆农业大学数理学院,新疆乌鲁木齐 830052)

摘要:为了探寻苹果产地溯源新方法,本文以新疆阿克苏、陕西洛川、山东烟台三个不同产地 600 个红富士苹果样本为试材分 别采集其 590~1250 nm 的近红外透射光谱图,将经过光谱校正后的光谱数据做归一化(Normalization)、多元散射校正(Multivariate Scattering Correction, MSC)等8种光谱预处理,对经过预处理后的光谱数据建立全波长分类模型发现二阶求导为最优预处理方法; 然后再将经过二阶求导预处理的光谱数据结合以欧几里得距离(Euclidean)、相关距离(correlation)、余弦相似度(cosine)、城市街 区距离(cityblock)作为距离度量的K最近邻法建模,发现K最近邻法(correlation)为最优分类识别方法;随后再分别用高斯过程 隐变量模型(Gaussian Process Latent Variable Model, GPLVM)、线性局部切空间排列(Linear Local Tangent Space Alignment, LLTSA)、 等12种数据降维方法对经二阶求导预处理后的光谱做降维处理,并结合K最近邻法(correlation)鉴别苹果产地。结果表明,提取前 9个主成分,采用二阶求导-扩散映射-K最近邻法(correlation)模型识别效果最优,建模集和预测集的分类识别率分别为 97.30%与 92.30%。故,深度学习数据降维方法结合近红外透射光谱技术可成功、有效地实现苹果产地溯源。

关键词:数据降维;近红外光谱;苹果;产地溯源 文章篇号:1673-9078(2020)06-303-309

DOI: 10.13982/j.mfst.1673-9078.2020.6.1249

Origin Tracing of Red Fuji Apple Based on Near Infrared Transmission

Spectrum and Various Dimension Reduction Methods

MA Yong-jie¹, GUO Jun-xian¹, GUO Zhi-ming², HUANG Hua³, SHI Yong¹, ZHOU Jun¹

(1.College of Mechanical and Electronic Engineering, Xinjiang Agricultural University, Urumqi 830052, China)

(2.College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China)

(3.College of Mathematics and Physics, Xinjiang Agricultural University, Urumqi 830052, China)

Abstract: In order to find a new method of tracing apple origin, in this work, 600 apple samples from three different producing areas of Aksu, Luochuan, and Yantai were used to collect the near-infrared transmission spectra within 590~1250 nm, then spectroscopically corrected spectrum were treated by eight species of spectral pretreatment such as normalization, standard normal variate transformation, multivariate scattering correction, savitzky-golay smoothing, 2nd derivative, mean centering, moving average, 1st derivative. Firstly, established full spectra classification model for pre-processed spectral data showed that 2nd derivative was the best pre-processing method. Secondly, data set preprocessed by 2nd derivative were used to combine 4 different KNN models (Euclidean, correlation, cosine, cityblock) to do pattern recognition, which was found that K-nearest neighbor method (correlation) was the best classification and recognition method. Thirdly, factor analysis, gaussian process latent variable model, linear local tangent space alignment, neighborhood components analysis, neighborhood

引文格式:

马永杰,郭俊先,郭志明,等.基于近红外透射光谱及多种数据降维方法的红富士苹果产地溯源[J].现代食品科技,2020,36(6):303-309

MA Yong-jie, GUO Jun-xian, GUO Zhi-ming, et al. Origin tracing of red Fuji apple based on near infrared transmission spectrum and various dimension reduction methods [J]. Modern Food Science and Technology, 2020, 36(6): 303-309

收稿日期: 2019-12-18

作者简介:马永杰(1995-),男,硕士研究生,研究方向:农产品无损快速检测

通讯作者:郭俊先(1975-),男,博士,教授,研究方向:农产品无损快速检测

基金项目: 国家自然科学基金项目(61367001)

现代食品科技

Modern Food Science and Technology

2020 Vol.36, No.6

preserving embedding, diffusion maps, t-distributed stochastic neighbor embedding, landmark isomap, laplacian eigenmaps, locally linear embedding, principal component analysis, linear discriminant analysis were used to reduce the dimension of the spectrum after 2nd derivative pretreatment, and then combining K-nearest neighbor was combined to trace the origin of apple. Results showed that an optimal identification model was obtained by using 2nd derivative-diffusion maps-KNN (correlation). The identification rates for the calibration set and prediction set were 97.3% and 92.3%, respectively. Therefore, the deep learning dimension reduction methods combined with near-infrared transmission spectroscopy could successfully and effectively discriminate the traceability of apple origin.

Key words: dimension reduction; near infrared spectroscopy; apple; origin traceability

苹果属蔷薇科落叶乔木,全世界有一千种以上的 栽培品种。我国现有栽植的主要品种有从欧洲、美洲、 日本传输过来,也有自己培育的新品种。现在我国苹 果的生产以乾县红富士、辽南寒富、山西万荣、甘肃 天水花牛苹果、山东红星、陕西洛川富士以及新疆阿 克苏红富士等为重点苹果产区^[1]。2017 至 2018 年度我 国苹果产量占世界苹果总产量的 58.39%,是世界上最 大的苹果栽培国家,也是产量最多的国家^[2]。

海内外众多专家及研究人员对苹果的成分及含 量做了大量研究报道,研究结果表明同种苹果在不同 产地的主要成分含量上的确存在一定的差异^[3]。这预 示着苹果的化学组成部分的含量不仅与苹果的品种有 关,也同样取决于苹果的产地。中国作为苹果生产大 国,有众多获得产源地保护的国家地理标志产品,这 是由于不同产地的苹果受到不同气候、环境等众多外 界因素影响,其内部组成的主要成分含量存在差异, 造成苹果在口感、水分、糖分等方面出现较为明显的 差别,使其各自形成各自独特的风味,市场价格也随 之不同。而正是由于市场对这些名优产品的大量需求, 随之而来的就是各种鱼目混珠、乱掺乱卖的现象屡见 不鲜,而通过颜色、气味、外形等传统鉴别方法观察 已经无法准确判断苹果产地,导致市场混乱、对国家 地理标志产品的声望和消费者权益都造成严重的侵 害。故, 迫切需求一种简单、快捷、无损的方法对苹 果产地准确检验。

近些年来近红外光谱技术在无损检测领域频出 贡献^[4],由于其具备分析速度快与样本的非破坏检测 等优点,该技术已经成功实现对花椒^[5]、脐橙^[6]、黄酒 ^[7]、枸杞^[8]、茶叶^[9]、葡萄^[10]、太子参^[11]、枇杷^[12]、雪 莲花^[13]等各类产品产地溯源。但是,近红外光谱技术 受制于其波段数目较多而存在数据冗余等问题,数据 降维的优良将直接影响所建模型的稳定性及成功率。 目前常规的数据降维方法主要有主成分分析、独立成 分分析、因子分析^[14]等。在此,本文将首次引入在图 像识别^[15]、机械故障诊断^[16]等领域取得应用的其他数 据降维方法应用于本研究。并且,将高斯过程隐变量 模型^[17]、线性局部切空间排列^[18]、近邻元分析^[19]、邻 域保持嵌入^[20]、扩散映射^[21]、t分布随机近邻嵌入^[22]、 地标等距映射^[23]、拉普拉斯映射^[24]、局部线性嵌入^[25] 在内的多种数据降维方法应用于水果产地溯源模型的 建立还未曾见报道。

本文以新疆阿克苏红富士苹果、山东烟台红富士 苹果、陕西洛川红富士苹果为研究对象,采用多种预 处理方法、数据降维方法和模式识别方法对近红外透 射光谱数据分析处理,分别建立基于全波长与特征提 取后的分类模型,通过比较不同分类模型的结果可以 得到不同光谱预处理方法、不同数据降维方法、不同 模式识别方法对苹果产地鉴别的影响。以期为苹果产 地溯源的实际应用提供新思路。

1 材料与方法

1.1 苹果样本

样本新疆阿克苏红富士苹果(80°29'E,41°15'N) 于 2019 年 1 月 6 日购买于某水果批发市场;样本山东 烟台红富士苹果(121°20'E,37°33'N)于 2019 年 1 月 10 日购买于某果蔬批发市场、陕西洛川红富士苹果 (109°42'E,35°76'N)于 2019 年 1 月 10 日购买于某 果蔬批发市场。由果商对同批次同品牌苹果拆箱挑选 大小适中、尺寸均匀、无明显损伤的苹果套网套,打 包装箱运回无损检测实验室。光谱采集开始之前,开 箱平铺、室温 20 ℃静置 24 h,擦净苹果表面浮土并逐 个编号。将每个产地的 200 枚苹果样本随机按照 1:1 的比例分为建模集与预测集,如表 1 所示。

表1 样本分布

Table 1 Sample Distribution

产地	新疆阿克苏	山东烟台	陕西洛川	总计
建模集	100	100	100	300
预测集	100	100	100	300

1.2 试验设备

近红外透射光谱采集系统如图 1。光谱采集范围 为 590~1250 nm,系统包括苹果托架、配备小型风扇 的 JCR12V 100 W 卤钨灯光源套件、美国海洋光学公

2020 Vol.36, No.6

司的 USB 2000+型近红外光谱仪、标准 SMA905 接口的光纤、铝合金机架、暗箱与计算机等组成。光纤探头一端连接光谱仪,另一端固定在苹果托架圆心正下方,实现对近红外透射光谱的高效采集。

图 1 近红外透射光谱采集系统

Fig.1 Near Infrared Transmission Spectrum Acquisition System

1.3 试验方法

1.3.1 光谱采集

光谱采集前先将 USB2000+光谱仪开机预热 60 min, 使仪器设备达到稳定状态后开始测试采样, 通 过测试采样设置 SpectraSuite 软件界面参数,得到合 适的光谱信息后确定样品光谱采集参数为:平均次数 3: 平滑度 5: 积分时间 120 ms: 波段数 512。采集光 谱时,将苹果按照图示置于光谱采集仪器的果托上, 注意苹果与果托之间不能留有光缝,确保光纤接收光 信号的点完全屏蔽光源,使其只能接收到透过苹果的 光。待软件界面显示的光谱稳定后,保存光谱;拿起 苹果再经过两次顺时针 120 度旋转,分别采集光谱, 最终将三次获得光谱的平均值作为该样本的光谱数 据。并且为了消除由于 USB2000+光纤光谱仪预热不 充分导致暗光谱发生微小变化所产生的试验误差,所 以每测量 10 个样本需保存该时刻的暗光谱用于后续 光谱校正。

1.3.2 光谱校正处理

光谱采集过程中,由于苹果形状差异及摄像头中 的暗电流的存在会对苹果光谱数据产生噪声影响,需 要对获得的近红外透射光谱数据按照公式1的方程进 行校正:

$$R = \frac{I_{\lambda} - B_{\lambda}}{W_{\lambda} - B_{\lambda}} \tag{1}$$

式中: R 为校正后的光谱; I_{λ} 为原始采集光谱; B_{λ} 为拧上 镜头盖采集的全黑暗光谱; W_{λ} 为全反射光谱。

- 1.4 数据处理方法
- 1.4.1 预处理方法

采用归一化(Normalization)、标准正态变量变换 (SNVT)、多元散射校正(MSC)、卷积平滑法(SG)、 二阶求导(2nd Derivative)、均值中心化(MC)、移 动平均平滑(MA)及一阶求导(1st Derivative)对样 本的近红外光谱数据做预处理。归一化主要用来消除 微小光程差异对光谱变化的影响;标准正态变量变换 用来消除样本颗粒大小和光散射等噪声信息夹入;多 元散射校正可以缩小由于漫反射造成的光谱数据差 异;卷积平滑法可有效消除基线漂移、倾斜;二阶导 数可以消弭光谱基线的回旋;均值中心化将光谱的变 动而非光谱的绝对量与待测性质或组成的变动进行关 联进而提高模型的稳健性;移动窗口平滑可以去除数 据变化剧烈的点实现平滑效果;一阶导数可以消除光 谱基线的平移。

1.4.2 数据降维方法

采用因子分析(Factor Analysis)、高斯过程隐变 量模型(GPLVM)、线性局部切空间排列(LLTSA)、 近邻元分析(NCA)、邻域保持嵌入(NPE)、扩散映 射(DM)、t分布随机近邻嵌入(t-SNE)、地标等距 映射(L-Isomap)、拉普拉斯映射(LE)、局部线性嵌 入(LLE)、主成分分析(PCA)、线性判别分析(LDA) 方法对样本的预处理后光谱做数据降维处理。

因子分析是从变量中提取共性因子,并要求原有 变量间具有较强相关性; 高斯过程隐变量模型利用高 斯过程对数据进行处理,建立从低维线性流形空间到 高维观察数据空间的映射关系,通过最大化观测数据 的联合概率密度,优化出高维观察数据在低维空间中 的坐标位置:线性局部切空间排列具有自动简化高维 混合域特征的能力;近邻元分析作为有监督式数据降 维算法,可以最大化区分不同类别间的信息,使同类 样本的聚集度更好,不同类样本的区别度更高;邻域 保持嵌入在数据降维的同时可以保持样本集原有的局 部邻域流形结构:扩散映射通过整合数据的局部几何 关系进而揭示数据集在不同尺度的几何结构,其聚焦 于发现数据集潜在的流行结构; t 分布随机近邻嵌入 在低维空间下,使用 t 分布替代高斯分布表达两点之 间的相似度,是在降维的同时考虑数据全局与局部关 系的算法; 地标等距映射从完整数据中随机选择像元 作为标志点,并在每个像元和标志点之间建立最短路 径图,其目的在于减少演算量的同时维持标志点与各 像元之间的测地间距; 拉普拉斯映射通过构建相似关 联图来重构数据流形的局部表征结构:局部线性嵌入 通过假设局部原始数据近似位于一张超平面上,从而 使得该局部的某个数据可以由其邻域数据线性表示: 线性判别将高维的样本投影到最佳鉴别矢量空间,以 达到抽取归类信息及压缩特征空间维度的效果。

1.4.3 不同距离度量的K最近邻法

采用不同距离度量的K最近邻法建立产地溯源分 类模型。K最近邻法是一种以同类样本在模式空间彼 此靠近为依据的算法,它计算在最近邻域中K个已知 样本到未知待判样本的距离,然后根据类别,归入比 重最大的那一类。而样本在模式空间的相似度由距离 度量决定,距离度量方法不同,所对应的模式识别结 果也就不同,由于光在苹果组织中的传输特性是一种 复杂的非线性结构,所以很难先验确定选用哪种距离 度量更为合适^[26]。故此采用4种距离度量方法,分别 为欧几里得距离、余弦相似度、城市街区距离、相关 距离,计算方法如下:

欧几里得距离:

$$d_{\text{Euclidean}}(X,Y) = \sqrt{\sum_{i=1}^{n} (X_i - Y_i)^2}$$
(2)

余弦相似度:

$$d_{\text{cosine}}(X,Y) = \frac{\sum_{i=1}^{n} X_{i}Y_{i}}{\sqrt{\sum_{i=1}^{n} X_{i}^{2}}\sqrt{\sum_{i=1}^{n} Y_{i}^{2}}}$$
(3)

城市街区距离:

$$d_{\text{cityblock}}(X,Y) = \sum_{i=1}^{n} |X_i - Y_i|$$
相关距离:
(4)

$$d_{\text{correlation}}(X,Y) = \frac{Cov(X,Y)}{V_{AR}(X)V_{AR}(Y)}$$

式中: $X(X_{l}, X_{2}, \dots, X_{n})$ 和 $Y(Y_{l}, Y_{2}, \dots, Y_{n})$ 分别为 n 维

空间中的两个样本; Cov为协方差, VAR为方差。

2 结果与讨论

2.1 不同地区苹果平均透射光谱曲线

regions

不同地区的苹果物理特性及可溶性固形物含量对 比见表 2,其中新疆阿克苏红富士苹果的横径范围及 纵径范围最大,陕西洛川苹果最小,平均可溶性固形 物含量的次序为新疆>陕西>山东。本文采集了 590~1250 nm 波长范围的 512 个波段的近红外数据, 每个地区随机挑选 150 个样本的平均光谱经过光谱校 正后见图 2。三条平均光谱形状、趋势非常一致,但 是新疆苹果在 600~900 nm 与其他两个地区苹果光谱 存在差异性分离,而陕西苹果与山东苹果之间的光谱 由于吸光度的差异较小而难以区分,因此还需要借助 模式识别分类器对以上地区苹果进行分类。

表2	试验苹果常规数据统计
able 2 Rout	ine Data Statistics of Test Apple

(5)

			11	
苹果产地	苹果横径/mm	苹果纵径范围/mm	可溶性固形物含量范围/Brix	可溶性固形物平均值/Brix
新疆阿克苏	78.36~102.52	59.44~91.84	12.82~18.26	15.46
山东烟台	73.61~98.12	59.25~90.51	10.67~14.70	12.48
陕西洛川	77.76~94.23	61.59~84.68	10.18~16.72	13.63

2.2 预处理方法的选取

原始光谱数据所获取的信息除了有含有待测苹果 的原始信息之外,还包含各种外在干扰信息,如检测 环境、样本背景以及设备自身的干扰。为尽可能减小 以上误差对数据分析产生的干扰,同时也为筛选出最 佳预处理方法,采用8种预处理方法对光谱数据进行 预处理之后,再使用基于欧几里得距离作为距离度量 的K最近邻法对经以上预处理方法后的光谱数据建模 分析,结果如表3。

由表3可见,基于不同预处理方法的K最近邻法 模型建模集正确率区间为84.60%~89.60%,预测集正 确率区间为75.60%~83.60%。可见利用近红外透射光 谱技术对苹果产地进行鉴别的方案可行。综合考虑可 知最优预处理方法为二阶求导,最优的K取值为7。 但是由于全光谱建模耗时长、变量复杂并且不稳定等 缺点,所以并不能直接应用于生产实际中,故选取二 阶求导预处理对样本集合做进一步分析。

± ^	人法以工甘工工同共和中主法的以外	나병피 후 비 수 비야이에 소
オマイ		1 棹型玉果产的温制茶

T 11 A		• . •	4 0 T 7 B 7 B 7		1100 /			1 0 11	
Inhlo 4	Annia arian	rocomition i	roto of K NN	modol bocod	on dittoront	nrotrootmont	mothode	undor full	cnootro
14000.27	ADDUC OF 1911	TECOSIMIUM		IIIUUCI DASCU	011 0111616111	DICTEATINCIE	THELIQUS I		506017
						p			

-	预处理方法	K取值	建模集精度/%	预测集精度/%
-	归一化	7	84.60	77.00
	标准正态变量变换	5	84.60	75.60
	多元散射校正	5	86.30	76.30
	卷积平滑法	7	85.00	77.30
	二阶求导	7	89.60	83.60
	均值中心化	7	85.30	77.30
	移动窗口平滑	7	84.60	76.60
	一阶求导	7	89.60	81.30
	原始	7	85.30	77.30

2.3 基于全波段的分类识别结果

表 4 基于全波段的四种模型苹果产地识别率

Table 4 Apple origin recognition rate based on four models

under full spectra						
模型	建模集精度/%	预测集精度/%				
K最近邻法(Euclidean)	89.60	83.60				
K最近邻法(cosine)	90.30	81.30				
K 最近邻法(cityblock)	91.30	84.30				
K最近邻法(correlation)	92.00	85.60				

对光谱数据做二阶求导预处理,并且基于不同度 量距离的 K 最近邻法进行全波长建模分析,旨在找出 最优模式识别方法,识别结果如表 4。以欧几里得距 离为距离度量的 K 最近邻法预测精度是最低的,分类 效果最好的是以相关距离为距离度量的 K 最近邻法, 建模集正确率为 92.0%,预测集正确率为 85.6%。 2.4 基于多种数据降维方法下的模式识别分

类结果

本文采集的光谱数据包含 512 个波段,若不对其 进行数据降维,模型的识别将会耗费大量的时间并且 不能保证是否有无关信息对预测精度造成不良影响。 因此,为了对比不同数据降维方法对近红外透射光谱 下苹果产地溯源模型的影响;本文将经过二阶求导预 处理后的光谱数据结合多种数据降维方法对光谱数据 做降维处理,再将所有降到合适维度的数据结合前文 所选最优分类方法,即 K 最近邻法(correlation)进 行建模分析,在建模分析中 1 被用来代表代表新疆红 富士苹果,2 为陕西红富士苹果,3 为山东红富士苹果。 所得结果如表 5。

表 5	基ナイ	司数据降维	方法的 K	最近邻法模型	<u> </u> 苹果产	地识别率	
1							

Table 5 Apple origin recognition rate With KNN model based on different data dimension reduction methods

降维方法	主成分数	建模集精度/%	预测集精度/%
因子分析	11	89.30	87.00
高斯过程隐变量模型	8	92.60	88.00
线性局部切空间排列	4	86.30	83.30
近邻元分析	13	92.30	86.00
邻域保持嵌入	7	90.30	83.00
扩散映射	9	97.30	92.30
t分布随机近邻嵌入	13	94.00	84.60
地标等距映射	10	87.30	82.30
拉普拉斯映射	5	86.60	82.60
局部线性嵌入	9	85.30	81.00
主成分分析	13	94.30	89.30
线性判别分析	13	85.60	82.30

由表 5 可知,在二阶求导预处理下,数据降维效 果最好的是扩散映射,提取前 9 个主成分,建模集和 预测集的分类识别率分别为 97.30%与 92.30%。经过 数据降维之后的光谱数据,结合 K 最近邻法 (correlation)建模不仅在光谱维度上进行了合理约 减,在识别正确率方面也要比全波长下建模效果好。

不同产地的红富士苹果在近红外光谱上存在的差 异主要由于不同产地红富士苹果自身的有机物的组成 及含量不同;其次,不同产地的红富士苹果由于温湿 度、海拔高度、日照时间、平均温度、年降水量等众 多外界因素影响也会造成一定的差异。本试验利用近 红外光谱技术结合深度学习算法使得利用较少的数据 信息便可得到较优结果,过程更加快捷、准确。经过 预处理后的光谱数据结合欧几里得距离、相关距离、 余弦相似度、城市街区距离作为距离度量的 K 最近邻 法分类最优正确率达到 92.30%,证明近红外透射光谱 技术结合化学计量算法对苹果产地分鉴具有可行性。

3 结论

3.1 提出一种基于深度学习数据降维方法的苹果产 地鉴别方法。对采集后经光谱校正处理后的光谱数据 用归一化、标准正态变量变换、多元散射校正、卷积 平滑法、二阶求导、均值中心化、移动窗口平滑及一 阶求导进行光谱预处理;随后对所有光谱预处理后的 光谱数据建立全波长模式识别模型,结果表明二阶求 导预处理方法最好,所建模型的建模集和预测集的分 类识别率分别为 89.60%与 83.60%。

3.2 对经过二阶求导预处理方法之后的光谱数据结 合欧几里得距离、相关距离、余弦相似度、城市街区 距离作为距离度量的K最近邻法进行苹果产地溯源的 建模分析;发现以相关距离作为距离度量的K最近邻 法为最优分类识别方法,所建模型的建模集和预测集 的分类识别率分别为 92.00%与 85.60%,其中最优 K 取值为7。

3.3 结合因子分析、高斯过程隐变量模型、线性局部 切空间排列、近邻元分析、邻域保持嵌入、扩散映射、 t分布随机近邻嵌入、地标等距映射、拉普拉斯映射、 局部线性嵌入、主成分分析、线性判别分析算法对经 过二阶求导预处理后的数据集做降维处理,再将降维 处理后的光谱数据结合 K 最近邻法(correlation)建 模。发现扩散映射为最优降维方法,其能在保持数据 内在几何结构的同时对其进行非线性降维,对数据有 聚类效果。扩散映射提取前 9 个主成分,数据建模集 和预测集的分类识别率分别为 97.30%与 92.30%。

3.4 本方法为红富士苹果产地溯源提供技术支持,可

以有效控制各产地苹果乱掺乱卖、以次充好的卑劣手 段,为保护具有国家地理标志的苹果产品提供检测识 别的新思路。

参考文献

108-112

- 中国科学院中国植物志编辑委员会.中国植物志[M].北京: 科学出版社,2004:371-372
 Editorial Board of Chinese Flora of Chinese Academy of Sciences. Flora of China [M]. Beijing: Science Press, 2004: 371-372
- [2] 孙平平,王文辉.2017/2018 年世界苹果、梨、葡萄、桃及樱桃产量、市场与贸易情况[J].中国果树,2018,2:99-108
 SUN Ping-ping, WANG Wen-hui. World apple, pear, grape, peach and cherry production, market and trade in 2017/2018
 [J]. China Fruits, 2018, 2: 99-108
- [3] 冯娟,任小林,田建文,等.不同产地富士苹果品质分析与比 较[J].食品工业科技,2013,34(14):108-112
 FENG Juan, REN Xiao-lin, TIAN Jian-wen, et al. Analysis and comparison of Fuji apple quality from different regions
 [J]. Science and Technology of Food Industry, 2013, 34(14):
- [4] 邹昊,田寒友,刘飞,等.近红外光谱的预处理对羊肉 TVB-N 模型的影响[J].食品科学,2016,37(22):180-186

ZOU Hao, TIAN Han-you, LIU Fei, et al. Effects of spectral pretreatments on prediction of total volatile basic nitrogen (TVB-N) content in mutton using near infrared spectroscopy [J]. Food Science, 2016, 37(22): 180-186

[5] 吴习宇,祝诗平,黄华,等.近红外光谱技术鉴别花椒产地[J]. 光谱学与光谱分析,2018,38(1):68-72
WU Xi-yu, ZHU Shi-ping, HUANG Hua, et al. Near infrared spectroscopy for determination of the geographical origin of Huajiao [J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 68-72

 [6] 苏学素,张晓焱,焦必宁,等.基于近红外光谱的脐橙产地溯 源研究[J].农业工程学报,2012,28(15):240-245
 SU Xue-su, ZHANG Xiao-yan, JIAO Bi-ning, et al. Determination of geographical origin of navel orange by near infrared spectroscopy [J]. Modern Food Science and Technology, 2012, 28(15): 240-245

- [7] Shen F, Yang D, Ying Y, et al. Discrimination between shaoxing wines and other chinese rice wines by near-infrared spectroscopy and chemometrics [J]. Food and Bioprocess Technology, 2012, 5(2): 786-795
- [8] 李仲,刘明地,吉守祥.基于枸杞红外光谱人工神经网络的 产地鉴别[J].光谱学与光谱分析,2016,36(3):720-723

LI Zhong, LIU Ming-de, JI Shou-xiang. The identification of the origin of Chinese wolfberry based on infrared spectral technology and the artificial neural network [J]. Spectroscopy and Spectral Analysis, 2016, 36(3): 720-723

- [9] Chen Q, Zhao J, Lin H. Study on discrimination of Roast green tea (*Camellia sinensis* L.) according to geographical origin by FT-NIR spectroscopy and supervised pattern recognition [J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2009, 72(4): 845-850
- [10] Arana I, Arazuri S. Maturity, variety and origin determination in white grapes (*Vitis vinifera* L.) using near infrared reflectance technology [J]. Journal of Near Infrared Spectroscopy, 2005, 13(1): 349
- [11] Lin H, Zhao J, Chen Q, et al. Discrimination of radix pseudostellariae according to geographical origins using NIR spectroscopy and support vector data description [J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2011, 79(5): 1381-1385
- [12] Fu X, Ying Y, Zhou Y, et al. Application of probabilistic neural networks in qualitative analysis of near infrared spectra: Determination of producing area and variety of loquats [J]. Analytica Chimica Acta, 2007, 598(1): 27-33
- [13] 赵杰文,蒋培,陈全胜.雪莲花产地鉴别的近红外光谱分析 方法[J].农业机械学报,2010,41(8):111-114
 ZHAO Jie-wen, JIANG Pei, CHEN Quan-sheng. Discrimination of snow lotus from different geographical origins by near infrared spectroscopy [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(8): 111-114
- [14] Li C, Li E, Zhang C, et al. Factor analysis based quantitative determination of flavor type and its corresponding relationship with growing areas in flue-cured tobacco[J]. Acta Tabacaria Sinica, 2016, 22(6): 51-62
- [15] Wang F, Zhang H, Zuo W, et al. Face recognition using fast neighborhood component analysis with spatially smooth regularizer [J]. Lecture Notes in Computer Science, 2012, 7751: 450-457
- [16] 陈法法,杨晓青,陈保家,等.基于正交邻域保持嵌入与多核 相关向量机的滚动轴承早期故障诊断[J].计算机集成制造 系统,2018,24(8):1946-1954

CHEN Fa-fa, YANG Xiao-qing, CHEN Bao-jia, et al. Early fault diagnosis of rolling bearing based on orthogonal neighborhood preserving embedding and multi-kernel relevance vector machine [J]. Computer Integrated Manufacturing Systems, 2018, 24(8): 1946-1954

- [17] Han B, Zhang L, Gao X, et al. Embedded locality discriminant GPLVM for dimensionality reduction [C]. International Joint Conference on Neural Networks. IEEE, 2016
- [18] 李锋,汤宝平,陈法法.基于线性局部切空间排列维数化简的故障诊断[J].振动与冲击,2012,31(13):36-40,61
 LI Feng, TANG Bao-ping, CHEN Fa-fa. Fault diagnosis model based on dimension reduction using linear local tangent space alignment [J]. Journal of Vibration and Shock, 2012, 31(13): 36-40, 61
- [19] Liu X, Wan H, Shi L. Quality metrics of spike sorting using neighborhood components analysis [J]. The Open Biomedical Engineering Journal, 2014, 8(1): 60-67
- [20] Yuan X, Ge Z, Ye L, et al. Supervised neighborhood preserving embedding for feature extraction and its application for soft sensor modeling: Supervised neighborhood preserving embedding [J]. Journal of Chemometrics, 2016, 30(8): 430-441
- [21] 倪家鹏,沈韬,朱艳,等.基于扩散映射的太赫兹光谱识别[J]. 光谱学与光谱分析,2017,37(8):2360-2364
 NI Jia-peng, SHEN Tao, ZHU Yan, et al. Terahertz
 - spectroscopic identification with diffusion maps [J]. Spectroscopy and Spectral Analysis, 2017, 37(8): 2360-2364
- [22] 徐森,花小朋,徐静,等.一种基于 T-分布随机近邻嵌入的聚 类集成方法[J].电子与信息学报,2018,40(6):1316-1322
 XU Sen, HUA Xiao-peng, XU Jing, et al. Cluster ensemble approach based on T-distributed stochastic neighbor embedding [J]. Journal of Electronics & Information Technology, 2018, 40(6): 1316-1322
- [23] Orsenigo, Carlotta. An improved set covering problem for isomap supervised landmark selection [J]. Pattern Recognition Letters, 2014, 49: 131-137
- [24] Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation [J]. Neural Computation, 2003, 15(6): 1373-1396
- [25] Liu X, Tosun D, Weiner M W, et al. Locally linear embedding (LLE) for MRI based Alzheimer's disease classification [J]. Neuro Image, 2013, 83: 148-157
- [26] 马惠玲,王若琳,蔡骋,等.基于高光谱成像的苹果品种快速 鉴别[J].农业机械学报,2017,48(4):305-312
 MA Hui-ling, WANG Ruo-lin, CAI Cheng, et al. Rapid identification of apple varieties based on hyperspectral imaging [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 305-312