PCR-DGGE 分析木瓜酵素自然发酵过程中 微生物的多样性

杜丽平¹, 刘艳¹, 焦媛媛¹, 马立娟¹, 肖冬光¹, 管于平²

(1.工业发酵微生物教育部重点实验室,天津市工业微生物重点实验室,天津科技大学生物工程学院,天津
 300457)(2.天津益丽康生物科技有限公司,天津 300300)

摘要:为探究木瓜酵素自然发酵过程中的微生物多样性及变化规律,采用聚合酶链式反应-变性梯度凝胶电泳 (polymerase chain reaction-denaturing gradient gel electrophoresis, PCR-DGGE)技术分析木瓜酵素自然发酵过程中细菌和酵母的多样性及变化规律。结果 表明,木瓜酵素自然发酵过程中主要细菌有植物乳杆菌(Lactobacillus plantarum)、假肠膜明串珠菌(Leuconostoc pseudomesenteroides)、 类肠膜魏斯氏菌 (Weissella paramesenteroides)及不可培养的丙酸菌 (Uncultured Propionibacterium sp.),其中植物乳杆菌为主要优势 细菌;主要酵母有:酿酒酵母(Saccharomyces cerevisiae)、假丝酵母(Candida xestobii、Candida intermedia)、毕赤酵母(Pichia guilliermondii、Komagataella phaffii、Pichia punctispora、Pichia galeiformis)、体孢酵母(Clavispora sp.)及Cyberlindnera fabianii,其中酿酒酵母和毕赤酵母为主要优势酵母;Lac plantarum、Pic galeiformis分别与Uncultured Propionibacterium sp.、Cyb fabianii 之间的亲缘性较高,与其他菌之间的亲缘性较小。木瓜酵素自然发酵过程中菌群交替生长,有一定的亲缘性,菌落结构变化较小,分布较为均匀,这为进一步的研究提供理论基础。

关键词:木瓜酵素;发酵;变性梯度凝胶电泳;细菌;酵母 文章篇号:1673-9078(2017)8-80-87

DOI: 10.13982/j.mfst.1673-9078.2017.8.013

Polymerase Chain Reaction-denaturing Gradient Gel Electrophoresis

Analysis of Microbial Diversity of Papaya Enzyme Preparation During

Natural Fermentation

DU Li-ping¹, LIU Yan¹, JIAO Yuan-yuan¹, MA Li-juan¹, XIAO Dong-guang¹, GUAN Yu-ping²

(1.Key Laboratory of Industry Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China) (2.Tianjin YiLiKang Biological Technology Co., Ltd, Tianjin 300300, China)

Abstract: In order to investigate the microbial diversity in a papaya enzyme preparation during the natural fermentation process, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the diversity and the pattern of changes of bacteria and yeast during natural fermentation. The results indicated that the main bacterial species were *Lactobacillus plantarum, Leuconostoc pseudomesenteroides, Weissella paramesenteroides*, and uncultured *Propionibacterium sp.*; the dominant bacterium was *Lactobacillus plantarum*. The main yeast species were *Saccharomyces cerevisiae*, *Candida xestobii*, *Candida intermedia*, *Pichia guilliermondii*, *Komagataella phaffii*, *Pichia punctispora*, *Pichia galeiformis*, *Clavispora sp.*, and *Cyberlindnera fabianii*. The dominant yeast species were *Saccharomyces cerevisiae* and *Pichia guilliermondii*. *Moreover*, *Lactobacillus plantarum* and *Pichia galeiformis* shared a high affinity with uncultured *Propionibacterium sp.* and *Cyberlindnera fabianii*, respectively, and a low affinity with other microorganisms. During natural fermentation, the microflora populations exhibited alternating growth patterns and showed a certain affinity; the colony structure changed slightly with uniform distribution.

Key words: papaya enzyme preparation; fermentation; polymerase chain reaction-denaturing gradient gel electrophoresis; bacteria; yeast

收稿日期: 2017-01-15

基金项目:天津市技术创新引导专项优秀科技特派员项目(16JCTPJC45900)

作者简介:杜丽平(1967-),女,博士,副教授,研究方向:发酵工程与分离工程

随着生活水平及养生意识的提高,人们开始把越 来越多的目光投向保健品。酵素作为一种保健品,近 年来受到了广泛关注。它是一种具有抗氧化美容保健 功能的,一般以蔬菜、水果、中草药或谷物为原料, 经过微生物发酵获得的富含抗氧化活性物质、有机酸 及多种酶类的发酵产品^[1]。其发酵方式有自然和接种 发酵,前者利用环境中的微生物发酵,后者利用人工 培养的有明确分类名称的微生物发酵。木瓜酵素流行 于日本,在当地由酵母发酵制得^[2],但在国内的制作 工艺尚不成熟,处于摸索阶段,其中大部分研究集中 在利用酵母、乳酸菌、混菌进行接种发酵上^[3,4],但对 自然发酵的研究则较少,尤其在微生物多样性及变化 方面,至今仍为空白。这在一定程度上限制了我国木 瓜酵素制作工艺的发展。研究其自然发酵过程中菌种 类型及变化规律,不仅可以促进木瓜酵素制作工艺的 发展,还为进一步研究其品质变化及风味物质形成机 理提供理论支持。

聚合酶链式反应-变性梯度凝胶电泳(polymerase chain reaction-denaturing gradient gel electrophoresis, PCR-DGGE)技术可以将大小相同但碱基序列不同的 核酸片段分离开,因此常作为研究微生物菌落结构的 手段。1993年,Muyzer等人首次将该技术应用于微 生物领域^[5],现在,该技术被广泛应用于众多领域。 如:鉴定农作物表面菌种结构以区别种植方式及晶种 ^[6,7]、分析发酵食品的微生物菌群结构及其动态变化 ^[8-12]、分析污水及沉积物中某因素对菌落结构的影响 ^[13,14]等。

本实验以具有减肥瘦身、美容养颜、抗氧化防衰 老功能^[15,16]的木瓜为原料,自然发酵制备酵素。利用 PCR-DGGE 技术,结合分子生物学手段及相关软件对 木瓜酵素自然发酵过程中微生物结构及变化规律进行 分析。通过研究该发酵过程中优势菌群及变化规律, 为木瓜酵素的制作工艺优化及进一步研究提供理论支 持。

1 材料与方法

- 1.1 材料
- 1.1.1 原料

新鲜木瓜和蔗糖均购于天津当地大型超市。

1.1.2 实验试剂

细菌基因组试剂盒,酵母基因组试剂盒,由美国 OMEGA 公司提供,r-taq 酶、10×PCR buffer、dNTP Mixture、pMD18-T 载体,由索莱宝生物有限公司提 供;所有引物合成由北京鼎国昌盛生物技术有限责任 公司完成。

1.1.3 主要仪器设备

PCR 仪、VerSa Doc 凝胶成像系统、DCode[™] System 变性梯度凝胶电泳系统,美国 Bio-Rad 公司。

1.2 方法

1.2.1 木瓜酵素的制作

称取新鲜木瓜2kg,切成块状,按照糖料比为0.5:1 的比例加入蔗糖,混合均匀,加入2L玻璃瓶中并密 封,30℃恒温培养箱中发酵42d,两个平行。每周取 样,连续取样六周,样品编号为W₁、W₂、W₃、W₄、 W₅和W₆。

1.2.2 总 DNA 的提取

2 mL 木瓜发酵液,加8 mL 无菌水稀释,纱布过滤,滤液经8000 r/min 离心 10 min,收集菌体。分别用细菌基因组试剂盒提取细菌基因组,酵母基因组试剂盒提取酵母基因组。基因组样品保存于-20 ℃冰箱备用。

1.2.3 16S rDNA V3 区和 26S rDNA D1 区的 PCR 扩增

1.2.3.1 16S rDNA PCR 反应

以 1.2.2 中提取的细菌基因组为模板, 27F/1492R 为引物扩增细菌 16S rDNA, 产物长度约 1500 bp。扩 增体系: DNA 模版 1 µL, 10×PCR Buffer 5 µL, dNTP 4 µL, 正反向引物各 1 µL, r-Taq 酶 1 µL, ddH₂O37 µL。 反应程序:95 ℃预变性 5 min,94 ℃变性 1 min,58 ℃ 退火 45 s, 72 ℃延伸 90 s, 30 个循环, 72 ℃后延伸 10 min。产物经 1.0%琼脂糖凝胶电泳验证后, 作为巢 式 PCR 的模版。

1.2.3.2 16S rDNA V3 区的 PCR 反应

以 1.2.3.1 中的 PCR 产物为模版, GC-338F/518R 为引物扩增细菌 16S rDNA V3 可变区,产物长度约 250 bp。PCR 扩增体系与 1.3.3(1)中相同。反应程序: 94 ℃预变性 5 min,94 ℃变性 45 s,65~55 ℃退火 45 s (每个循环降低 0.5 ℃),72 ℃延伸 30 s, 20 个循环, 94 ℃变性 40 s,55 ℃退火 45 s,72 ℃延伸 30 s, 15 个循环,72 ℃后延伸 10 min。PCR 产物经 2%琼脂糖 凝胶电泳验证,作为变性梯度凝胶电泳样品。

1.2.3.3 酵母 26S rDNA D1/D2 区 PCR 反应

以 1.2.2 中提取的酵母基因组为模板,NL1/NL4 为引物扩增酵母 26S rDNA D1/D2 区,产物长度约 600 bp。PCR 扩增体系与 1.2.3.1 中相同。反应程序:95 ℃ 预变性 5 min,94 ℃变性 45 s,56 ℃退火 45 s,72 ℃ 延伸 45 s,30 个循环,72 ℃后延伸 10 min。产物经 1.0%琼脂糖凝胶电泳验证后,作为下一步 PCR 模版。

现代食	品科技
-----	-----

Modern Food Science and Technology

表1 引物信息

Table 1 Primer information

引物名称	序列(5'→3')
27F	AGA GTT TGA TCC TGG CTC AG
1492R	GGC TAC CTT GTT ACG ACTT
GC-338F	<u>CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG G</u>
338F	AC TCC TAC GGG AGG CAG CAG
518R	ATT ACC GCG GCT GCT GG
NL1	GCA TAT CAA TAA GCG GAG GAA AAG
NL4	GGT CCG TGT T TC A AG ACG G
GC-NL1	GCG GGC CGC GCG ACC GCC GGG ACG CGC GAG CCG GCG G
LS2	ATT CCC AAA CAA CTC GAC TC

注:划线部分为 GC 夹板。

1.2.3.4 酵母 26S rDNA D1 区 PCR 反应

以 1.2.3.3 中的 PCR 产物为模版, GC-NL1/LS2 为引物扩增酵母 26S rDNA D1 可变区,产物长度约为 300 bp。PCR 扩增体系与 1.2.3.1 中相同。反应程序: 95 ℃预变性 5 min, 94 ℃变性 1 min, 56 ℃退火 45 s, 72 ℃延伸 30 s, 30 个循环,72 ℃后延伸 10 min。PCR 产物经 2%琼脂糖凝胶电泳验证,作为变性梯度凝胶 电泳样品。

1.2.4 变性梯度凝胶电泳 (DGGE)

采用美国 Bio-Rad 公司的 Dcode[™]通用突变检测 系统对 PCR 扩增产物进行电泳分离分析。分别取 1.2.3.2 中细菌 16S rDNA V3 区、1.2.3.4 中酵母 26S rDNA D1 区的 PCR 扩增产物上样。聚丙烯酰胺浓度 为 8% (*m/V*),变性梯度为 35%~65%,电泳条件为: 1×TAE 缓冲液,恒温 60 ℃、恒压 80 V,电泳 720 min。 电泳结束后用适量 EB 染液浸染,使用紫外凝胶成像 系统拍照。

1.2.5 DGGE 图谱中优势条带的回收测序

分别切胶回收细菌、酵母 DGGE 图谱中的优势条带,加适量超纯水过夜溶解片段,取上清液,以不带GC 夹板的引物 338F/518R、NL1/LS2,分别扩增细菌 16S rDNA V3 区和酵母 26S rDNA D1 区。反应体系及程序与带GC 夹板的一致。目标片段经 2%琼脂糖凝胶 电泳检测后,-20 ℃冰箱保存,作为后续克隆的目的 片段。采用 pMD18-T Vector Cloning Kit 克隆目的片 段,挑阳性克隆子培养,用试剂盒提取质粒,送北京 华大基因科技有限公司测序。

1.2.6 指纹图谱分析

利用 quantityone 软件对 DGGE 指纹图谱进行解析。根据条带的数量及灰度计算样品的 Shannon-Wiener 多样性指数 (H), Margalef 丰富度指数 (D)

以及 Pielou 均匀度指数(E),分析细菌、酵母菌群多 样性。利用 UPGMA 算法对不同时间发酵液的细菌、 酵母菌群进行聚类分析。

Margalef 丰富度指数(D):

D=(S-1) lnN Shannon-Wiener 多样性指数(H):

 $H = -\sum \frac{Ni}{N} \ln \frac{Ni}{N}$

Pielou 均匀度指数(E): $E = \frac{H}{\ln S}$

式中: S 为样品中的条带数; H 为 Shannon-Wiener 多样性 指数; N 为样品条带总强度; Ni 为第 i 个条带的强度。

1.2.7 序列比对,系统发育树构建

选择优势条带回收测序,测序结果用 DNAMAN 分析,登录 NCBI (www.ncbi.nlm. nih.gov/blast/),进行序列比对,利用 MEGA 软件,采用 Neighbor-Joining 法构建系统发育树,自展数为 1000。

2 结果与讨论

2.1 细菌 16S rDNA、16S rDNA V3 区及酵母

26S rDNA D1/D2 区、26S rDNA D1 区 PCR 结

果

分别以 27F/1492R、GC-338F/518R 引物扩增细菌 16S rDNA、16S rDNA V3 区,以 NL1/NL 4、 NL1-gc-clamp/LS2 引物扩增酵母 26S rDNA D1/D2 区、 26S rDNAD1 区,分别得大小约为 1500 bp、250 bp、 600 bp 和 300 bp 的目的片段,结果如图 1 中 a、b、c 和 d 所示。说明目的片段扩增成功。

2017, Vol.33, No.8

图 1 细菌 16S rDNA、16S rDNA V3 区、酵母 26S rDNA D1/D2、 26S rDNA D1 区 PCR 结果

Fig.1 PCR amplification of 16S rDNA and 16S rDNA V3 gene regions in bacteria, and 26S rDNA D1/D2 and 26S rDNA D1 gene regions in yeast

注: (a): 细菌 16S rDNA PCR 结果; (b): 细菌 16S rDNA V3 区 PCR 结果; (c): 酵母 26S rDNA D1/D2 区 PCR 结果; (d): 酵母 26S rDNA D1 区 PCR 结果; W₁~W₆: 第一周~第六周样品; M5000: marker5000; M500: marker500。

2.2 DGGE 指纹图谱分析

木瓜酵素第 1~6 周发酵液细菌 16S rDNA V3 区及 酵母 26S rDNA D1 区变性梯度凝胶电泳结果分别如图 2 和图 3 所示。

DGGE 图谱中条带的数量代表菌落的遗传多样 性,亮度强弱代表菌量的多少。由图2可知,各泳道 (W₁~W₆)的条带数目相近,但各条带的迁移率及亮 度均有一定差异,说明发酵过程中,细菌的种类和数 量发生了一定程度的变化。如:条带6存在于泳道 W₁和W₂中,且是泳道W₁各条带中亮度最大的,说 明条带6所对应的菌是发酵初期(第1周)的优势菌。 条带4(W₂~W₆)、条带10(W₁~W₆)存在发酵全程, 且亮度较大,对应的菌是发酵全程的优势菌。而条带 13、14和15仅存在于泳道W₁中,对应的菌则可能是 发酵前期所带入的杂菌,随着发酵的进行逐渐消失。

图 3 酵母 26SrDNA D1 区 DGGE 指纹图谱及条带简图 Fig.3 DGGE profile of PCR-amplified 26S rDNA D1 regions

and schematic diagram of the yeast bands

▶ 同理,由图3可知,各泳道(W₁~W₆)的条带数 目、各条带的迁移率及亮度均有一定差异,说明在发 酵过程中,酵母菌的种类和数量发生了一定程度的变 化。如:条带3、5、6和10存在发酵全程,且亮度较 大,说明其所代表的菌是发酵全程的优势菌。同理, 条带4和8(W₁~W₂)所代表的菌是发酵前期(第1~2 周)的优势菌。条带7出现在发酵前3周,条带1和 2出现在发酵中期,条带9和12出现在发酵中后期, 说明在发酵过程中酵母菌群出现交替生长的现象。

2.3 多样性分析

多样性指数是用来测量群落内生物种类数量及稳定性的一种指标。可分为物种丰富度指数、物种多样性指数、物种均匀度指数三类。根据图谱条带信息,采用 Shannon-Wiener 多样性指数(H), Margalef 丰富度指数(D)以及 Pielou 均匀度指数(E)对细菌、酵母的菌群多样性进行分析,结果如表 2 所示。

由表 2 可知,不同发酵阶段的细菌、酵母多样性 指数 H、均匀度指数 E 及丰富度指数 D 均表现出一定

Modern Food Science and Technology

2017, Vol.33, No.8

的差异。第1周样品具有较高的细菌丰富度及多样性,可能是由发酵初期带入的杂菌所致;随着发酵的进行, 优势菌生长,保持菌群结构的稳定,而细菌多样性指 数在第5周达到最高为2.09;发酵后期,细菌丰富度 指数在第6周达最高为25.06,可能是因为优势菌数量 减少,杂菌开始生长。酵母菌多样性和丰富度在发初 期(第1周)较高,随后有所降低,发酵中期(第3~4 周)升高,并出现最高值,分别为 25.25 和 2.03,后 期(第5周)降低,末期(第6周)升高。这可能是 因为发酵前期(第1~2周)优势酵母菌的衰竭,中期 新酵母菌的的生长,后期优势酵母衰竭及末期杂菌的 生长导致。均匀度指数变化趋势与多样性指数的一致, 细菌和酵母均匀度最大值分别为 4.31(第5周)和 4.23 (第4周)。以上结果与 DGGE 图谱直观结果一致。

微生物	样品编号	多样性指数 (H)	丰富度指数 (D)	均匀度指数(E)
细菌	\mathbf{W}_1	1.91±0.017	24.71±0.014	4.02±0.021
	W_2	1.89±0.0063	24.60±0.18	3.95±0.039
	W_3	1.87 ± 0.0048	21.12±0.025	3.66±0.035
	W_4	2.02±0.017	24.64±0.072	4.19±0.015
	W_5	2.09±0.011	23.75±0.22	4.31±0.028
	W_6	2.01±0.0017	25.06±0.23	4.19±0.021
	W1	1.86±0.013	20.41±0.20	3.62±0.031
	W_2	1.65±0.016	19.91±0.73	3.21±0.029
两	W ₃	2.01±0.014	25.25±0.0059	4.21±0.019
대수 7 4	W_4	2.03±0.0053	24.88±0.010	4.23±0.025
	W_5	1.88±0.018	15.98±0.15	3.36±0.033
	W_6	1.89±0.18	20.42±0.20	3.68±0.035

2.4 聚类分析

图 4 木瓜酵素细菌 DGGE 指纹图谱聚类分析 Fig.4 Cluster analysis of DGGE profiles for bacterial communities in papaya enzyme preparations

由图 4 可知,第 1、6 周与其他周的细菌菌群相似 性较小,可能是由发酵前期和后期的杂菌生长所致; 而第 2~5 周的相似性较大,其中第 3 和第 4 周的相似 性最大,达 0.90,这是因为优势菌的生长,维持了发 酵体系中菌群的稳定。可见,木瓜酵素在发酵过程中 具有相似度很高的细菌种群结构,这也与图谱直观结 果相符。

0.43 0.43 0.68 0.68 0.91 W5

图 5 木瓜酵素酵母 DGGE 指纹图谱聚类分析

由图 5 可知,发酵过程中酵母菌群的分布整体具 有一定相似性,但呈阶段性变化,可分为第 1~2、3~4 和 5~6 周 3 个阶段,阶段内具有较高的相似度。其中 5~6 周的相似度最高,达到 0.91。这可能是木瓜酵素 在发酵过程中酵母菌群交替生长的结果。

2.5 测序及系统发育树构建

细菌 DGGE 图谱中,选择条带 2、4、6、10、12 和 16,分别命名为 bac band 2、bac band 4、bac band 6、

现代食品科技

Modern Food Science and Technology

2017, Vol.33, No.8

bac band 10、bac band 12 和 bac band 16; 酵母 DGGE 图谱中,选择条带 2、3、4、5、6、8、9、10 和 12, 分别命名为 sac band 2、sac band 3、sac band 4、sac band 5、sac band 6、sac band 8、sac band 9、sac band 10 和 sac band 12。将所选条带切胶回收并测序分析,测序 结果在NCBI上比对,所得结果如表3所示。MEGA 4.0 软件构建细菌、酵母系统发育树,Neighbor-joining 算法,自展数(boot strap)为1000,结果如图6和图7 所示。

表 3 DGGE 条带测序比对结果

测序条带	相似菌株	相似度/%	序列 ID
bac band2	Lactobacillus plantarum	100	LC209103.1
bac band4	Lactobacillus plantarum	99	KU898976.1
bac band6	Leuconostoc pseudomesenteroides	99 🔨	AF515228.1
bac band10	Lactobacillus plantarum	100	KU898975.1
bac band12	Uncultured Propionibacterium sp.	100	KX078229.1
bac band16	Weissella paramesenteroides	100	LC150827.1
sac band2	Cyberlindnera fabianii	100	KY108793.1
sac band3	Saccharomyces cerevisiae	100	NR_132209.1
sac band4	Candida xestobii	-99	AM160626.1
sac band5	Pichia guilliermondii 🛛 📃	100	KU729167.1
sac band6	Komagataella phaffii	100	KY108514.1
sac band8	Candida intermedia	99	EF629543.1
sac band9	Pichia punctispora	100	KY108914.1
sac band10	Pichia galeiformis	100	JQ073767.1
sac band12	Clavispora sp.	98	LN870344.1

图 6 细菌系统发育树

Fig.6 Bacterial phylogenetic tree

据表3可知,该发酵液中检测到的细菌、酵母有: 植物乳杆菌(Lactobacillus plantarum)、假肠膜明串珠菌 (Leuconostoc pseudomesenteroides)、类肠膜魏斯氏菌 (Weissella paramesenteroides)、不可培养的丙酸菌 (Uncultured Propionibacterium sp.)、酿酒酵母 (Saccharomyces cerevisiae)、假丝酵母(Candida xestobii、Candida intermedia)、毕赤酵母(Pichia guilliermondii 、Komagataella phaffii^[17]、Pichia punctispora、Pichia galeiformis)、棒孢酵母(Clavispora sp.)及Cyberlindnera fabianii。结合DGGE 指纹图谱 可知,发酵过程的主要优势菌为植物乳杆菌(Lac plantarum)、酿酒酵母(Sac spp.)和毕赤酵母(Pic guilliermondii、Kom phaffii、Pic punctispora、Pic galeiformis)。假肠膜明串珠菌(Leu pseudomesenteroides)和假丝酵母(Can xestobii、Can intermedia)为发酵前期的优势菌。亲缘性结果如图6和图7所示,Lac plantarum 与 Uncultured Propionibacterium sp.的亲缘性较高,Leu pseudomesenteroides 与其他细菌的亲缘性最小;Pic galeiformis 与 Cyb fabianii 的亲缘性最高,Kom phaffii

与其他酵母菌的亲缘性最小。

图 7 酵母系统发育树

Fig.7 Yeast phylogenetic tree

假肠膜明串珠菌常见于发酵体系中,但不适合在 低 pH 值下生存^[18,19],而植物乳杆菌不仅能产酸使体 系 pH 降低,而且还可以产抗菌化合物抑制其他菌生 长^[20],比如有研究发现分离自木瓜的一株植物乳杆菌 所产的细菌素,对肠杆菌属、肠球菌属、乳杆菌属、 假单胞菌属、链球菌属及葡萄糖球菌属的不同种及不 同类型的李斯特菌均具有较好的抗性^[21],这或可为植 物乳杆菌成为主要优势细菌做出解释。酵母种类相对 丰富,其中酿酒酵母和毕赤酵母为主要优势酵母,这 与马麦生^[22]发现该菌是酵素菌中主要活性酵母的结 论相符。酿酒酵母会对非酿酒酵母产生抑制作用,不 同酵母最适生长条件也有所差异^[23],菌群之间相互竞 争、相互抑制,出现交替生长现象。另外,本体系的 主要细菌及酵母菌也常见于韩国泡菜中^[24,25]。

本研究采用较高糖浓度的方式自然发酵制作木瓜 酵素,通过高渗环境抑制杂菌的生长,突出发酵过程 中的优势菌株,为探究主要微生物的种类及变化以及 后期菌种的分离鉴定提供便利。

3 结论

本实验利用 PCR-DGGE 技术分析木瓜酵素自然 发酵过程中的微生物多样性及变化规律,结果表明: 木瓜酵素自然发酵过程中的菌群种类较为丰富,有假 肠膜明串珠菌(Leu pseudomesenteroides)、植物乳杆 菌(Lac plantarum)、类肠膜魏斯氏菌(Wei paramesenteroides)、不可培养的丙酸菌(Uncultured Propionibacterium sp.)、酿酒酵母(Sac cerevisiae)、 假丝酵母(Can xestobii、Can intermedia)、毕赤酵母

(Pic guilliermondii、Kom phaffii、Pic punctispora、Pic galeiformis)、棒孢酵母(Clavispora sp.)及 Cyb fabianii, 其中假肠膜明串珠菌、假丝酵母为发酵初期优势菌, 植物乳杆菌、酿酒酵母和毕赤酵母为发酵全程优势菌。 结合相关软件分析表明,发酵过程中菌落分布较为均 匀,交替生长,具有一定的亲缘性。这促进了木瓜酵 素制作工艺的发展,为进一步研究品质变化及风味物 质的形成机理提供理论支持,还为酵素的接菌发酵提 供理论依据^[26]。

参考文献

[2]

[1] 何嘉欣.台湾酵素营养保健品产业现状分析[J].海峡科技与 产业,2013,10:77-82

HE Jia-xin. Present situation analysis of Taiwan enzyme nutrition health care products industry [J]. The Channel Technology and Industry, 2013, 10: 77-82

Zhang J, Mori A, Chen Q, et al. Fermented papaya preparation attenuates β -amyloid precursor protein: β -amyloid-mediated copper neurotoxicity in β -amyloid precursor protein and β -amyloid precursor protein swedish mutation overexpressing sh-sY5Y cells [J]. Neuroscience, 2006, 143: 63-72

[3] 刘波,聂银苹,聂磊.一种木瓜酵素的制备方法:中国专 利,105707855A[P]2016-06-29

LIU Bo, NIE Yin-ping, NIE Lei. A papaya enzyme preparation methods: Chinese patent, 105707855A [P] 2016-06-29

- [4] 吴文辉,吴宗政.木瓜灵芝酵素及其生产方法:中国专利,102599444A[P]2012-07-25
 WU Wen-hui, WU Zong-zheng. Papaya ganoderma lucidum enzyme and its production method: Chinese patent, 102599444A [P] 2012-07-25
- [5] Muyzer G, De Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA [J]. Applied and

Environmental Microbiology, 1993, 59(3): 695-700

- [6] E L Shobaky A, Meile J C, Montet D. New traceability strategies based on a biological Bar Code by PCR-DGGE using bacterial and yeast communities for determining farming type of peach [J]. Egyptian Journal of Basic and Applied Sciences, 2015, 2(4): 327-333
- [7] Mahyarudin, Rusmana I, Lestari Y. Metagenomic of actinomycetes based on 16S rRNA and nifH genes in soil and roots of four indonesian rice cultivars using PCR-DGGE [J]. Hayati Journal of Biosciences, 2015, 22(3): 113-121
- [8] 彭杨,张奶,英何利,等.基于 PCR-DGGE 技术的四川麸醋 固态发酵过程中微生物群落分析[J].现代食品科技,2016, 32(8):171-177

PENG Yang, ZHANG Nai, YING He-li, et al. Sichuan bran vinegar microbial communities analysis in the process of solid-state fermentation based on PCR -DGGE technology [J]. Journal of Modern Food Science and Technology, 2016, 32(8): 171-177

- [9] Lucena-Padrós H, Jiménez E, Maldonado-Barragán A, et al. PCR-DGGE assessment of the bacterial diversity in Spanish-style green table-olive fermentations [J]. International Journal of Food Microbiology, 2015, 205: 47-53
- [10] Diaz M, Ladero V, Redruello B, et al. A PCR-DGGE method for the identification of histamine-producing bacteria in cheese [J]. Food Control, 2016, 63: 216-223
- [11] 张先琴,张小平,敖晓琳,等.PCR-DGGE 分析四川地区家庭 制作泡菜中微生物多样性[J].食品科学,2013,34(12):129-134

ZHANG Xian-qin, ZHANG Xiao-ping, AO Xiao-lin, et al. Analysis the microbial diversity of family making kimchi in Sichuan province by PCR-DGGE [J]. Journal of Food Science, 2013, 34(12): 129-134

[12] 郑艳,姚婷.PCR-DGGE 分析甘薯酸浆自然发酵过程中细 菌多样性[J].食品科学,2016,37(7):99-103

ZHENG Yan, YAO Ting. PCR-DGGE analysising the bacterial diversity in the natural fermentation process of sweet potato acid pulp [J]. Journal of Food Science, 2016, 37(7): 99-103

- [13] Ruan A D, Liu C X. Analysis of effect of nicotine on microbial community structure in sediment using PCR-DGGE fingerprinting [J]. Water Science and Engineering, 2015, 8(4): 309-314
- [14] Aydin S, Shahi A, Ozbayram E G, et al. Use of PCR-DGGE based molecular methods to assessment of microbial diversity during anaerobic treatment of antibiotic

combinations [J]. Bioresource Technology, 2015, 192: 735-740

[15] 冯爱国,李春艳.木瓜的营养成分及功效价值[J].中国食物 与营养,2008,5:54-55

FENG Ai-guo, LI Chun-yan. Utrition composition and efficacy value of papaya [J]. China's Food and Nutrition, 2008, 5: 54-55

- [16] Galang M G M, Macabeo A P G, Chang W C, et al. Glucosides from the unripe fruit juice of *Carica papaya* Linn. (*Caricaceae*) cultivar 'Red Lady' with antioxidant activity [J]. Journal of Functional Foods, 2016, 22: 358-362
- [17] Kurtzman C P. Biotechnological strains of komagataella (*Pichia*) pastoris are komagataella phaffii as determined from multigene sequence analysis [J]. Journal of Industrial Microbiology & Biotechnology, 2009, 36(11): 1435-8
- [18] Casado Muñoz M C, Benomar N, Lerma L L, et al. Antibiotic resistance of *Lactobacillus pentosus* and *Leuconostoc pseudome* senteroides isolated from naturally-fermented Aloreña table olives throughout fermentation process [J]. International Jornal of Food Microbiology, 2014, 172: 110-118
- [19] 王刚,刘娟,陈光,等.产 D-乳酸假肠膜明串珠菌生长特性分析[J].湖北农业科学,2016,55(5):1239-1241

WANG Gang, LIU Juan, CHEN Guang, et al. Growth characteristics analysis of *Leuconostoc pseudomesenteroides* producing D-lactic acid [J]. Journal of Hubei Agricultural Science, 2016, 55(5): 1239-1241

- [20] De Vuyst L, Vandamme E J. Bacteriocins of lactic acid bacteria: Microbiology, genetics and applications [M]. London: Blackie Academic and Professional, 1994
- [21] Todorov S D, Prévost H, Lebois M, et al. Bacteriocinogenic Lactobacillus plantarum ST16Pa isolated from papaya (Carica papaya)-from isolation to application: Characterization of a bacteriocin [J]. Food Research International, 2011, 44(5): 1351-1363
- [22] 马麦生,谭明,赵乃昕,等.酵素菌中酵母菌的分离鉴定[J].潍 坊医学院学报,2002,24(2):81-85 MA Mai-sheng, TAN Ming, ZHAO Nai-xin, et al. Separation and identification of yeast in the enzyme fungus [J]. Journal of Weifang Medical College, 2002, 24(2): 81-85
- [23] Albergaria H, Francisco D, Gori K, et al. Saccharomyces cerevisiae CCMI 885 secretes peptides that inhibit the growth of some non-*Saccharomyces* wine-related strains [J]. Applied Microbiology and Biotechnology, 2010, 86(3): 965-972
- [24] Chang H W, Kim K H, Nam Y D, et al. Analysis of yeast and

Modern Food Science and Technology

2017, Vol.33, No.8

archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis [J]. International Journal of Food Microbiology, 2008, 126: 159-166

- [25] Jung J Y, Lee S H, Jin H M, et.al. Metatranscriptomic analysis of lactic acid bacterial gene expression during kimchi fermentation [J]. International Journal of Food Microbiology, 2013, 163(2-3): 171-179
- [26] 杨芳,申元英.应用 PCR-DGGE 技术构建不同酵素微生物 指纹图谱的初步研究[J].食品与发酵科技,2015,51(5):7-13
 YANG Fang, SHEN Yuan-ying. Preliminary study of using PCR-DGGE technology to build different enzyme microorganism fingerprint [J]. Journal of Food and Fermentation Technology, 2015, 51(5): 7-13