旋转速度对壶瓶枣损伤检测影响的研究

刘蒋龙,张淑娟,王斌,薛建新,赵旭婷

(山西农业大学工学院,山西太谷 030801)

摘要:基于实验室搭建的近红外光谱检测装置,对不同旋转速度下壶瓶枣的三种损伤样本进行检测识别,探明旋转速度对损伤 检测的影响。依据壶瓶枣检测的旋转速度理论计算结果,利用 Fieldspec 3 光谱仪采集 1.5 r/min、2.0 r/min 和 2.5 r/min 三种旋转速度下 不同损伤壶瓶枣的光谱信息,基于 PLS 模型及其判别指标从 13 种预处理方法中寻找不同旋转速度下的最佳的预处理方式。通过偏最 小二乘回归系数法 (PLSRC) 和连续投影法 (SPA) 提取光谱特征波长点,然后建立偏最小二乘分析(PLS-DA)、极限学习机 (ELM) 和最小二乘支持向量机 (LS-SVM) 三种判别模型。结果表明: 旋转速度对壶瓶枣损伤检测存在影响,三种旋转速度下的最佳模型分 别为 PLSRC-LS-SVM、PLSRC-PLS-DA 和 PLSRC-PLS-DA,判别准确率分别为 92.30%、88.46%和 86.54%, 1.5 r/min 建立的 PLSRC-LS-SVM 识别率最高。且随着旋转速度的增加,损伤识别率呈下降趋势。该研究为鲜枣在线检测设备的开发提供理论支持。

关键词:可见近红外光谱;鲜枣;检测;旋转速度 文章篇号:1673-9078(2017)6-158-165

DOI: 10.13982/j.mfst.1673-9078.2017.6.023

Effect of Fruit Rotation Speed on the Detection of Damage in

'Huping' Jujube Fruits

LIU Jiang-long, ZHANG Shu-juan, WANG Bin, XUE Jian-xin, ZHAO Xu-ting

(Department of Engineering, Shanxi Agriculture University, Taigu 030801, China)

Abstract: Using a laboratory-installed near-infrared spectroscopy system, three kinds of damaged 'Huping' jujube samples, and intact samples, were examined and identified to explore the influence of rotation speed on the detection of damage. Spectral information on fruits with different degrees of damage at three rotation speeds of 1.5 r/min, 2.0 r/min, and 2.5 r/min were collected by Fieldspec 3 spectrometer, and the results were calculated based on the measured rotation speed. The partial least squares (PLS) model was built and several discriminant indices were used to determine the best spectral pre-processing method from 13 methods at three rotation speeds. The partial least-squares regression coefficient (PLSRC) method and successive projections algorithm (SPA) were used to extract the characteristic wavelengths of spectra before calibration. The partial least squares-discriminant analysis (PLS-DA), extreme learning machine (ELM), and least squares support vector machines (LS-SVM) were used to establish discrimination models. The results showed that rotation speed had an impact on the detection of the damage in 'Huping' jujube fruits. The optimal models at the rotation speeds of 1.5 r/min, 2.0 r/min, and 2.5 r/min were PLSRC-LS-SVM, PLSRC-PLS-DA, and PLSRC-PLS-DA, respectively, and the corresponding discrimination accuracies were 92.30%, 88.46%, and 86.54%, respectively. The highest damage identification rate was found in the PLSRC-LS-SVM model established at the rotation speed of 1.5 r/min. In addition, with increasing rotation speed, the damage identification rate showed a downward trend. This study provides a theoretical reference for the development of online detection instruments for fresh jujubes.

Key words: visible/near infrared spectroscopy; fresh jujube; detection; rotation speed

在壶瓶枣采摘和运输过程中,由于挤压、摔落和 碰撞等情况,会在表面形成肉眼无法识别的轻微损伤。 这些样本短时间外观品质变化很小,但随着时间腐烂

收稿日期: 2016-10-24

基金项目: 国家自然科学基金资助项目(31271973)

作者简介:刘蒋龙(1992-),男,硕士研究生,从事无损检测技术及装备的 研究

通讯作者: 张淑娟(1963-), 女,教授,博士生导师,从事无损检测技术及 装备的研究 变质,严重影响果品的外观,同时还会大量释放乙烯, 破坏其它果实品质,影响鲜枣的储藏和货架^[1]。因此, 壶瓶枣无损检测技术的发展尤其是在线检测的技术的 进步,对其产业化经营非常重要。在线检测过程中, 损伤部位位置不固定,为了实现损伤部位的信息有效 采集,对壶瓶枣做轴向旋转作用。与静态检测相比, 在线动态检测会由于水果运动引入噪声,降低采集光 谱信噪比。光谱信噪比影响预测模型精度,且与旋转 速度正相关。旋转速度越快,检测效率提高,但是光

1.2

光谱采集装置

谱信噪比影响增大,即对模型的精度影响也增大^[2]。 因此,有必要研究旋转速度对模型精度的影响。

基于近红外光谱技术能够实现对水果品质进行快 速检测。何东健^[3]等通过透射光谱对柑橘的内部品质 进行检测,建立的线性回归方程能够在线检测其酸度 和糖度,相关系数分别为0.85和0.95; Clark^[4]等采集 鳄梨的近红外光谱数据对干物质(Dry Matter, DM) 和可溶性固溶物(Soluble solids content, SSC)进行 检测,所建立的 PLS 模型预测相关性较高; MaGlone^[5] 等搭建了近红外在线检测系统,在5 m/s 的移动速度 下对苹果进行检测,对苹果的 DM 的预测准确度达 0.93; 张淑娟^[6]等利用近红外光谱技术对鲜枣的 SSC 含量进行静态预测,所建立 BP 神经网络判别模型判 别率达 100%; Mosctti^[7]等通过近红外光谱建立的隐藏 昆虫栗子检测模型,错误率低至16.81%;郭志明^[8]等 基于近红外光谱对苹果内部品质进行在线检测,建立 了苹果的蚁群优化算法模型,预测集相关系数达到 0.9358。以上研究大多针对静态或者线位移水果品质 检测,但是对不同旋转速度下的损伤判别模型精度的 分析,很少有文章做过相关研究。

本文利用实验室搭建的近红外光谱检测试验装 置,以山西太谷壶瓶枣为实验对象,采集3种不同旋 转速度(1.5 r/min、2.0 r/min 和 2.5 r/min)的损伤以及 完好样本的可见近红外光谱信息,研究不同旋转速度 对鲜枣轻微损伤判别精度的影响,为在线平台的搭建 提供理论支撑。

1 材料与方法

1.1 试验材料

以太谷壶瓶枣为研究对象,试验样品采集于山西 省太谷县北张村。挑选形状均匀,大小相近的壶瓶枣 152 个,将采集的样本先用保鲜袋运到实验室,之后 立即置于4℃冰箱进行贮藏备用。使用万能材料试验 机(Instron Corporation, INSTRON5544, USA)对37 个壶瓶枣进行压缩试验,试验加载速度3.5 mm/s,压 缩深度2 mm。模拟枣在运输过程中受到的挤压损伤 ^[9]。太谷壶瓶枣果实密集在果树距地面2~3 m处,因 此模拟枣在自然状态下的空间位置,使其从2 m和3 m 的高度位置自由落体到枣园的土地上,模拟枣在采摘 时自然掉落形成的损伤,样本量分别为36 和39 个。 保留完好样本40 个。按照2:1 比例将样本随机划分为 校正集和预测集,具体划分结果如表1。

				T T					8-		
铝佐米刑	2 m		3	3 m 挤压			完	好	总	总和	
视历天空	校正集	预测集	校正集	预测集	校正集	预测集	校正集	预测集	校正集	预测集	
划分个数	24	12	26	13	24	13	26	14	100	52	

Table 1 Results of calibration sets and prediction sets selected for the samples with different types of damage

表 1 不同损伤类型样本校正集和预测集划分结果

 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

 0
 0
 0
 0
 0
 0
 11

 0
 0
 0
 0
 0
 11

 0
 0
 0
 0
 0
 12

 0
 0
 0
 0
 0
 12

 0
 0
 0
 0
 0
 0
 12

 0
 0
 0
 0
 0
 0
 12

 0
 0
 0
 0
 0
 0
 0
 12

 0
 0
 0
 0
 0
 0
 0
 0
 12

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <

Fig.1 Schematic structure of the near-infrared spectroscopy

system

注: 1, 链轮; 2, 辊轮与传送链条; 3, 摩擦带; 4, 黑箱; 5, 卤素灯; 6, 探头; 7, 样本; 8, 摩擦带轮; 9, 光谱仪; 10, 光纤; 11, 计算机; 12, 调速电机。

图 1 为轻微损伤鲜枣检测试验转置简图。两个电 机分别驱动传送链条和摩擦带做间歇运动,传送链条 的副板上安装有传送辊轮,负责壶瓶枣的装载输送, 摩擦带通过摩擦力作用驱动传送辊轮旋转,进而带动 两个辊轮之间的鲜枣实现旋转运动。当壶瓶枣输送进 入到探头区域,传送链条停止运转,摩擦带轮在电机 动力驱动下驱动摩擦带,壶瓶枣完成旋转运动。通过 调速电机的速度控制,实现红枣不同速度的旋转。利 用美国 ASD (Analytical Spectral Device)公司生产的 Field Spec3 型光谱仪(350~2500 nm)实现壶瓶枣近红 外光谱采集。

1.3 壶瓶枣检测旋转速度的理论计算

所选壶瓶枣的腰径 d 大小为 29.95~31.36 mm,损 伤区域所对应的最小直径为 l。光谱扫描时间 t 为 100 ms。扫描次数为 3 次。以枣圆周运动距离不超过损伤 部位的直径为标准设置速度旋转阈值。公式(1~3) 为最大转速计算公式。

$$\alpha = \frac{180l}{\pi \cdot \frac{d}{2}} \tag{1}$$

$$T = \frac{t}{1000 \times 60}$$
(2)
$$n = \frac{\alpha}{l} = \frac{180 \times 1000 \times 60 \times 2 \times l}{(3)}$$

$$n = \frac{1}{T} = \frac{1}{360 \times 3 \times \pi dt}$$
(3)

计算得速度最大为 2.7 r/min,考虑到检测效率等问题,以 2.5 r/min 为最大值,0.5 r/min 为梯度,选择 1.5 r/min, 2.0 r/min, 2.5 r/min 三个旋转速度进行试验分析。辊轮材料表面进行花纹处理,此研究中选择枣的旋转速度为 1.5 r/min~2.5 r/min,依靠辊轮和枣之间的摩擦力能够实现鲜枣和辊轮线速度一致运动。

1.4 数据分析

通过 ASD View Spec Pro V5.0(Analytical Spectral Device, USA)完成光谱数据提取,基于 MATLAB R2012a (The Math Works, Natick, USA)和 The Unscrambler X10.1 (CAMO AS, Oslo, Norway)两款 软件进行数据分析和处理。

1.5 数据处理方法

寻找最佳光谱预处理方法^[10]。通过决定系数 (coefficient of determination of calibration, R_C)、预测 相关系数(correlation coefficient of prediction, R_P)、 定标标准偏差(standard error of calibration, SEC)、验 证标准偏差(bias-corrected standard error of prediction, SEP)、交互验证标准误差(standard error of cross validation, SECV) 五个参数对所建立的 PLS 模型进 行分析验证,确定最佳预处理方法。

采用连续投影法^[11](Successive Progjections Algorithm, SPA)和最小二乘回归系数算法^[12](Partial Least Squares Regression Coefficient, PLSRC)两种方 法对光谱预处理之后的光谱完成特征波长的提取,消 除光谱数据中的冗杂信息,提高建模的速率。

2 结果与分析

2.1 不同旋转速度的光谱采集结果

在不同的旋转速度下,采集3种轻微损伤和完好 壶瓶枣的近红外光谱信息。考虑到噪声、基线漂移等 无关信息的影响,仅采用 400~2450 波段的光谱数据 进行研究。图2为各样本不同旋转速度下的平均光谱 图。不同样本在不同旋转速度下的光谱曲线趋势相近, 在反射率之间存在一定的差异。平均光谱在波长为 960 nm、1180 nm、1300 nm、1590 nm 和 2000 nm 出 现吸收峰,这是由于 O-H 键的吸收导致,2000~2450 nm 是可溶性固溶物 C-H、N-H、O-H 键的合频吸收带,680 nm 处吸收峰是由壶瓶枣果肉中的叶绿素对光谱的吸收导致。

Modern Food Science and Technology 表 2 三种旋转速度下不同预处理方法的 PLS 模型参数

2017, Vol.33, No.6

Table 2 Statistical narameters (of PLS models under diffe	ent spectral pre-processing	methods at three rotation speeds
Table 2 Statistical parameters	of r LS models under unter	ent spectral pre-processing	memous at unce rotation specus

ナけ			1.5 r/ı	nin					2.0 1	:/min		
力法	R _C	MEC	SECV	$R_{\rm P}$	SEP	因子数	 R _C	SEC	SECV	R _P	SEP	因子数
原始光谱	0.8877	0.5119	0.6495	0.8217	0.6507	9	0.7706	0.6929	0.7866	0.7782	0.7823	9
MF	0.8866	0.5144	0.6523	0.8185	0.6556	9	0.7705	0.6931	0.7869	0.7782	0.7823	11
S-G 平滑	0.8871	0.5133	0.6504	0.8202	0.6525	10	0.7705	0.693	0.7864	0.7784	0.7824	11
SNV	0.8919	0.5029	0.6323	0.8459	0.6084	9	0.726	0.7477	0.8171	0.7517	0.8229	9
3点平滑	0.8868	0.5138	0.6511	0.8191	0.6541	9	0.7705	0.6932	0.7864	0.7782	0.783	9
SNV+Detreding	0.8932	0.5001	0.6206	0.8401	2.0004	9	0.7355	0.7366	0.8092	0.7969	1.1976	10
MSC	0.8896	0.5079	0.6271	0.8416	0.6157	9	0.726	0.7478	0.8134	0.7527	0.8229	9
OSC	0.9998	0.0161	0.0178	0.7071	1.1236	9	0.9998	0.0195	0.0223	0.783	1.1902	9
First Derivative	0.8793	0.5295	0.6394	0.1611	7.5025	10	0.8385	0.5924	0.7781	0.0144	2.8917	9
SecondDerivative	0.9909	0.1495	0.6635	0.7416	2.1313	10	0.9652	0.2844	0.7963	0.5637	2.0848	9
Baseline	0.8862	0.5152	0.6468	0.8189	0.6583	9	0.7715	0.6917	0.7904	0.757	0.7907	10
SNV+MF	0.8909	0.5049	0.6346	0.8439	0.6117	9	0.7259	0.7478	0.8173	0.7519	0.8228	9
MF+SNV	0.8866	0.5144	0.6523	0.8185	0.6556	9	0.7259	0.7478	0.8173	0.7518	0.8229	9
			2.5 r/1	nin								

万注							
714	R _C	SEC	SECV	R _P	SEP	因子数	
原始光谱	0.656	0.7746	0.8694	0.425	1.1728	11	
MF	0.656	0.7746	0.8694	0.4244	1.1729	-9	
S-G 平滑	0.6557	0.7748	0.8694	0.4244	1.1734	9	
SNV	0.6566	0.774	0.892	0.5555	1.174	9	
3点平滑	0.6556	0.775	0.8694	0.4238	1.1751	9	
SNV+Detreding	0.6695	0.7623	0.858	0.4762	3.4181	11	
MSC	0.6429	0.7861	0.8934	0.4126	1.1768	11	
OSC	0.9998	0.0182	0.0174	0.0078	1.3909	11	
First Derivative	0.5701	0.8432	0.8949	0.5447	6.6464	9	
SecondDerivative	0.9634	0.275	0.8452	0.1284	1.3656	9	
Baseline	0.5952	0.8247	0.904	0.4489	1.1825	11	
SNV+MF	0.6565	0.7741	0.1652	0.1212	1.1406	9	
MF+SNV	0.6427	0.7862	0.1112	0.4125	1.1769	10	

2.2 光谱预处理

通过建立光谱数据的PLS预测分析模型寻找最佳 光谱预处理方法,比较在不同预处理方法下PLS 模型 的评价参数。分析不同旋转速度下13种预处理方法对 损伤检测模型精度的影响,以SEC、SECV、SEP、 RC和RP五个指标作为评价标准对模型进行最佳预处 理方法进行选择,RC和RP的值越高且越接近,SEC、 SECV和SEP三者值越小且三者差的绝对值越小,表 明模型精确度越高,稳定性越好,预测性能越好。采 用留一交互验证法,按照交互验证的预测残差平方和 (Predicted Residual Sum of Squares, PRESS)值来确 定模型的最佳主因子数, PRESS 值的大小说明模型的 识别性能越好坏。结果见表 2。综合比较不同的预处 理方法,在1.5 r/min 和 2.5 r/min 三种旋转速度下的最 佳预处理方法都为 SNV, 2.0 r/min 转速下采用原始光 谱建模最佳。

2.3 特征波长提取

使用全波段数据进行建模,信息量庞大且冗余信 息多,相邻波段相关性强。特征波段携带了最重要的 判别信息,提取特征波长是为了获取原始标本的有效 信息,克服原始数据的相关性,奇异性和不稳定性, 提高预测可靠性。

PLSRC 方法对训练集建立 *m* 个子集,对所建立的每个子集,基于 PLS 模型对每个波长下的回归系数

值进行计算,并根据回归系数绝对值大小进行各子集 n个波长点的排序,构成m×n的矩阵。然后根据频数 统计方法对各列波长进行排序,得到n维波长向量。 以逐步累加方式在新的n维向量中进入新的波长点, 若新加入的波长点数据未能使交互检验误差均方根 (RMSECV)值有显著的降低,则剔除掉,如此不断循 环选择最佳波长变量集。

图 3 三种旋转速度下的 PLSRC 和 SPA 特征波长提取 Fig.3 Optimum characteristic wavelengths selected by PLSRC

and SPA at three rotation speeds

SPA 特征波长点波选取算法,从复杂的光谱信息 中寻找含冗余信息最少的变量组,进而解决各波长变 量间的共线性问题,使得各变量之间的共线性达到最 小,从而实现模型复杂程度的降低,以较小的信息量 来表示原样本的光谱信息。

图 3a 和 3b 为 1.5 r/min 旋转速度下 SNV 预处理 后的经 PLSRC 和 SPA 选取的特征波长。分别得到 687 nm, 773 nm, 829 nm, 963 nm, 1065 nm, 1119 nm, 1294 nm、1333 nm、1379 nm、1417 nm、1658 nm、 1814 nm、1908 nm 和 2134 nm 14 个特征波长和 1328 nm, 1309 nm, 405 nm, 1106 nm, 2411 nm, 437 nm, 1646 nm 和 402 nm 8 个特征波长。图 3c 和 3d 为 2.0 r/min 旋转速度下经过两种方法提取的原始光谱的特 征波长。经过PLSRC 提取的14个特征波长为687 nm、 773 nm、829 nm、963 nm、1065 nm、1119 nm、1294 nm, 1333 nm, 1379 nm, 1417 nm, 1658 nm, 1841 nm, 1908 nm 和 2134 nm, 经过 SPA 提取的 6 个特征波长 为408 nm、527 nm、1780 nm、1338 nm、401 nm、和 1928 nm。图 3e 和 3f 为预处理之后的 2.5 r/min 转速下 提取的特征波长的结果。PLSRC 和 SPA 分别对应 19(612 nm, 688 nm, 722 nm, 797 nm, 924 nm, 979 nm, 1060 nm, 1112 nm, 1163 nm, 1293 nm, 1329 nm, 1387 nm、1460 nm、1661 nm、1782 nm、1877 nm、 1937 nm、2106 nm 和 2199 nm)和 3(404 nm、1676 nm

现代食品科技

和 2411 nm)个特征波长。

表 3 三种旋转速度的壶瓶枣损伤判别结果

Table 3 Discriminant results for	'Huping' jujube fruits at three rotation speeds
----------------------------------	---

旋转速度	性红油上坦阳	中村ナン	计标本数	2 m 落地技	员伤(12 个)	3 m 落地损伤(13 个)		
/(r/min)	将征波大硬联	建快力法	心杆伞剱	误判个数	准确率/%	误判个数	准确率/%	
		PLS-DA	52	0	100	2	84.62	
	PLSRC	ELM	52	2	83.33	2	84.62	
15		LS-SVM	52	0	100	0	100	
1.5		PLS-DA	52	2	83.33	2	84.62	
	SPA	ELM	52	2	83.33	2	84.62	K
		LS-SVM	52	2	83.33	1	92.31	
		PLS-DA	52	2	83.33	2	84.62	
	PLSRC	ELM	52	1	91.67	2	84.62	
2.0		LS-SVM	52	2	83.33	1	92.31	
2.0		PLS-DA	52	3	75	2	84.62	
	SPA	ELM	52	2	83.33	3	76.92	
		LS-SVM	52	2	83.33	3	76.92	
		PLS-DA	52	1	91.67	2	84.62	
	PLSRC	ELM	52	3	75	2	84.62	
25		LS-SVM	52	2	83.33	3	76.92	
2.5	SPA	PLS-DA	52	2	83.33	3	76.92	
		ELM	52	3	75	1	92.31	
		LS-SVM	52	2	83.33	3	76.92	
旋转速度	特征波长提取	建档方注	已样木粉	挤压损	伤(13 个)	完好((14 个)	判别率
旋转速度 /(r/min)	特征波长提取	建模方法	总样本数	挤压损 误判个数	伤(13个) 准确率/%	完好(误判个数	(14 个) 准确率/%	 /%
旋转速度 /(r/min)	特征波长提取	建模方法 PLS-DA	总样本数 52	挤压损1 误判个数 1	伤(13个) 准确率/% 92.31	完好(误判个数 2	(14个) 准确率/% 85.71	<u>判</u> 别率 /% 90.38
旋转速度 /(r/min)	特征波长提取 PLSRC	建模方法 PLS-DA ELM	总样本数 52 52	挤压损1 误判个数 1 2	伤(13个) 准确率/% 92.31 84.62	完好(误判个数 2 0	(14个) 准确率/% 85.71 100	<u>判別率</u> /% 90.38 88.46
旋转速度 /(r/min)	特征波长提取 PLSRC	建模方法 PLS-DA ELM LS-SVM	总样本数 52 52 52	挤压损1 误判个数 1 2 1	伤(13个) 准确率/% 92.31 84.62 92.31	完好((14个) 准确率/% 85.71 100 78.57	<u>判別率</u> /% 90.38 88.46 92.30
旋转速度 /(r/min) 1.5	特征波长提取 PLSRC	建模方法 PLS-DA ELM LS-SVM PLS-DA	总样本数 52 52 52 52 52	挤压损1 误判个数 1 2 1 2	<u>海(13 个)</u> <u>准确率/%</u> 92.31 84.62 92.31 84.62	完好(<u> </u>	(14 个) 准确率/% 85.71 100 78.57 92.86	- 判別率 /% 90.38 88.46 92.30 86.54
旋转速度 /(r/min) 1.5	特征波长提取 PLSRC 	建模方法 PLS-DA ELM LS-SVM PLS-DA ELM	总样本数 52 52 52 52 52 52 52	挤压损1 误判个数 1 2 1 2 3	族(13个) 准确率/% 92.31 84.62 92.31 84.62 76.92	完好((14 个) 准确率/% 85.71 100 78.57 92.86 92.86	<u>判別率</u> /% 90.38 88.46 92.30 86.54 84.62
旋转速度 /(r/min) 1.5	特征波长提取 PLSRC SPA	建模方法 PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM	总样本数 52 52 52 52 52 52 52 52	挤压损1 误判个数 1 2 1 2 3 2	伤(13个) 准确率/% 92.31 84.62 92.31 84.62 76.92 84.62	完好(<u> </u>	(14 个) 准确率/% 85.71 100 78.57 92.86 92.86 85.71	- 判別率 /% 90.38 88.46 92.30 86.54 84.62 86.54
旋转速度 /(r/min) 1.5	特征波长提取 PLSRC SPA	建模方法 PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM PLS-DA	总样本数 52 52 52 52 52 52 52 52 52 52	挤压损1 误判个数 1 2 1 2 3 2 1	第(13个) 准确率/% 92.31 84.62 92.31 84.62 76.92 84.62 92.31	完好((14 个) 准确率/% 85.71 100 78.57 92.86 92.86 85.71 92.86	- 判別率 /% 90.38 88.46 92.30 86.54 84.62 86.54 88.46
旋转速度 /(r/min) 1.5	特征波长提取 PLSRC SPA PLSRC	建模方法 PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM PLS-DA ELM	 总样本数 52 	挤压损1 误判个数 1 2 1 2 3 2 1 2 1 2	第(13个) 准确率/% 92.31 84.62 92.31 84.62 76.92 84.62 92.31 84.62	完好(送判个数 2 0 3 1 1 2 1 2	(14 个) 准确率/% 85.71 100 78.57 92.86 92.86 85.71 92.86 85.71	- 判別率 /% 90.38 88.46 92.30 86.54 84.62 86.54 88.46 88.46 88.46
旋转速度 /(r/min) 1.5	特征波长提取 PLSRC SPA PLSRC	建模方法 PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM	总样本数 52 52 52 52 52 52 52 52 52 52 52 52 52	挤压损1 误判个数 1 2 1 2 3 2 1 2 3 3	第(13个) 准确率/% 92.31 84.62 92.31 84.62 76.92 84.62 92.31 84.62 92.31 84.62 76.92	完好((14 个) 准确率/% 85.71 100 78.57 92.86 92.86 85.71 92.86 85.71 85.71	- 判別率 /% 90.38 88.46 92.30 86.54 84.62 86.54 88.46 86.54 88.46 86.54 84.62
旋转速度 /(r/min) 1.5 2.0	特征波长提取 PLSRC SPA PLSRC	建模方法 PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM PLS-DA	 送样本数 52 	挤压损1 误判个数 1 2 1 2 3 2 1 2 3 2 1 2 3 2	第(13个) 准确率/% 92.31 84.62 92.31 84.62 76.92 84.62 92.31 84.62 76.92 84.62	完好((14 个) 准确率/% 85.71 100 78.57 92.86 92.86 85.71 92.86 85.71 92.86 85.71 85.71 85.71 	- 判別率 /% 90.38 88.46 92.30 86.54 84.62 86.54 88.46 88.46 88.46 86.54 88.46 282.69
旋转速度 /(r/min) 1.5 2.0	特征波长提取 PLSRC SPA PLSRC SPA	建模方法 PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM PLS-DA ELM PLS-DA ELM	总样本数 52 52 52 52 52 52 52 52 52 52 52 52 52	挤压损1 误判个数 1 2 1 2 3 2 1 2 3 2 2 2	第(13个) 准确率/% 92.31 84.62 92.31 84.62 76.92 84.62 92.31 84.62 76.92 84.62 76.92 84.62 84.62	完好((14 个) 准确率/% 85.71 100 78.57 92.86 92.86 85.71 92.86 85.71 92.86 85.71 85.71 85.71 92.86 	判別率 /% 90.38 88.46 92.30 86.54 84.62 86.54 88.46 86.54 88.46 86.54 88.46 86.54 88.46 86.54 88.46 86.54 88.46 86.54 84.62 82.69 84.62
旋转速度 /(r/min) 1.5 2.0	特征波长提取 PLSRC SPA PLSRC SPA	建模方法 PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM LS-SVM	 总样本数 52 	挤压损1 误判个数 1 2 1 2 3 2 1 2 3 2 2 3	第(13个) 准确率/% 92.31 84.62 92.31 84.62 76.92 84.62 92.31 84.62 76.92 84.62 84.62 84.62 84.62 76.92	完好((14 个) 准确率/% 85.71 100 78.57 92.86 92.86 85.71 92.86 85.71 85.71 85.71 92.86 85.71 	- 判別率 /% 90.38 88.46 92.30 86.54 84.62 86.54 88.46 86.54 88.46 86.54 84.62 82.69 84.62 80.77
旋转速度 /(r/min) 1.5 2.0	特征波长提取 PLSRC SPA PLSRC SPA	建模方法 PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM	总样本数 52 52 52 52 52 52 52 52 52 52 52 52 52	挤压损1 误判个数 1 2 1 2 3 2 1 2 3 2 2 3 2 2 3 2	第(13 个) 准确率/% 92.31 84.62 92.31 84.62 76.92 84.62 92.31 84.62 76.92 84.62 76.92 84.62 84.62 84.62 76.92 84.62 84.62 84.62	完好(误判个数 2 0 3 1 1 2 1 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	 (14 个) 准确率/% 85.71 100 78.57 92.86 92.86 85.71 92.86 85.71 85.71 92.86 85.71 85.71 85.71 85.71 	判別率 /% 90.38 88.46 92.30 86.54 84.62 86.54 88.46 86.54 88.46 86.54 84.62 82.69 84.62 80.77 86.54
旋转速度 /(r/min) 1.5 2.0	特征波长提取 PLSRC SPA PLSRC SPA PLSRC	建模方法 PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM	 送样本数 52 	挤压损1 误判个数 1 2 1 2 3 2 1 2 3 2 3 2 3 3	第(13个) 准确率/% 92.31 84.62 92.31 84.62 76.92 84.62 92.31 84.62 76.92 84.62 76.92 84.62 76.92 84.62 76.92	完好(误判个数 2 0 3 1 1 2 1 2 2 1 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	 (14 个) 准确率/% 85.71 100 78.57 92.86 92.86 85.71 92.86 85.71 85.71 85.71 92.86 85.71 85.71 85.71 85.71 85.71 85.71 	判別率 /% 90.38 88.46 92.30 86.54 84.62 86.54 88.46 86.54 88.46 86.54 88.46 86.54 88.46 86.54 88.46 86.54 84.62 82.69 84.62 80.77 86.54 80.77
旋转速度 /(r/min) 1.5 2.0	特征波长提取 PLSRC SPA PLSRC SPA PLSRC	建模方法 PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM	总样本数 52 52 52 52 52 52 52 52 52 52 52 52 52	挤压损1 误判个数 1 2 1 2 3 2 1 2 3 2 3 2 3 1	第(13 个) 准确率/% 92.31 84.62 92.31 84.62 92.31 84.62 76.92 84.62 76.92 84.62 76.92 84.62 76.92 84.62 76.92 84.62 76.92 92.31		 (14 个) 准确率/% 85.71 100 78.57 92.86 92.86 85.71 92.86 85.71 85.71 92.86 85.71 85.71 85.71 85.71 85.71 85.71 78.57 	判別率 /% 90.38 88.46 92.30 86.54 84.62 86.54 88.46 86.54 88.46 86.54 88.46 86.54 88.46 86.54 84.62 82.69 84.62 80.77 86.54 80.77 86.54
旋转速度 /(r/min) 1.5 2.0 2.5	特征波长提取 PLSRC SPA PLSRC SPA PLSRC	建模方法 PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM PLS-DA	 送样本数 52 	挤压损 沃利个数 「沃利个数 1 2 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2	第(13 个) 准确率/% 92.31 84.62 92.31 84.62 76.92 84.62 92.31 84.62 76.92 84.62 76.92 84.62 76.92 84.62 76.92 84.62 76.92 84.62 76.92 84.62 76.92 84.62 76.92 84.62 76.92 84.62	完好(误判个数 2 0 3 1 1 2 1 2 2 1 2 1 2 2 1 2 2 1 2 2 3 3	 (14 个) 准确率/% 85.71 100 78.57 92.86 92.86 85.71 92.86 85.71 85.71 85.71 85.71 85.71 85.71 85.71 78.57 78.57 	判別率 /% 90.38 88.46 92.30 86.54 84.62 86.54 88.46 86.54 88.46 86.54 88.46 86.54 88.46 86.54 88.46 86.54 84.62 82.69 84.62 80.77 86.54 80.77 82.69 80.77
旋转速度 /(r/min) 1.5 2.0 2.5	特征波长提取 PLSRC SPA PLSRC SPA PLSRC SPA	建模方法 PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM PLS-DA ELM LS-SVM PLS-DA ELM	总样本数 52 52 52 52 52 52 52 52 52 52 52 52 52	挤压损1 误判个数 1 2 1 2 3 2 1 2 3 2 3 2 3 1 2 3 1 2 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 1 2 3 3 3 3	第(13 个) 准确率/% 92.31 84.62 92.31 84.62 92.31 84.62 76.92 84.62 76.92 84.62 76.92 84.62 76.92 84.62 76.92 92.31 84.62 76.92 92.31	完好(误判个数 2 0 3 1 1 2 1 2 2 1 2 2 1 2 2 1 2 2 3 3 4	 (14 个) 准确率/% 85.71 100 78.57 92.86 92.86 85.71 92.86 85.71 85.71 85.71 85.71 85.71 85.71 78.57 78.57 71.42 	判別率 /% 90.38 88.46 92.30 86.54 84.62 86.54 88.46 86.54 88.46 86.54 84.62 82.69 84.62 80.77 86.54 80.77 82.69 80.77 78.85

2.4 基于特征波长的模型判别

Fig.4 Discriminant results for the PLSRC-LS-SVM model at a rotation speed of 1.5 r/min

Fig.5 Discriminant results for the PLSRC-PLS-DA model at a

偏最小二乘判别分析法^[13](Partial Least Squares-Discriminant Analysis, PLS-DA)将偏最小二乘法和线 性判别分析方法相结合,能够在相关性较高和噪声较 大的情况下实现很高的稳健性判别;极限学习机^[14] (Extreme Learning Machine, ELM)是神经网络算法 的一种。设置合适的隐层结点参数,然后利用得到的 外权来决定输出,在传统神经网络的复杂迭代基础上 实现了简化,加之其快速的学习能力,良好的泛化性, 简单的参数设置等优点,得到广泛的应用。最小二乘 支持向量机^[15](Least Squares Support Vector Machines, LS-SVM)基于结构风险最小化,在 SVM 基础上改进 的多元统计学方法,实质是函数二次的凸规划问题。 将 SVM 中较复杂的二次优化问题转换为求解一组线 性方程问题。以 PLSRC 与 SPA 提取的特征波长点数 据分别建立三种旋转速度下的 PLS-DA、ELM 和 LS-SVM 模型。表 3 为判别结果。

分析表 3 得,单独分析各旋转度结果,在 1.5 r/min 旋转速度下,以 PLSRC 作为特征波长选取方法提取 的特征波长点数据建立的LS-SVM 模型判别率高于其 它模型,正确识别率达 92.30%,其中 2 m 自由落地损 伤、3 m 自由落地损伤,挤压损伤以及完好样本的正 确识别率分别为 100%、100%、92.31%和 78.57%。在 转速为 2.0 r/min 时,所建立的 PLSRC-PLS-DA 模型 最优,总体正确识别率为 88.46%,分样本判别率各为 83.33%、84.62%、92.31%和 92.86%。当转速增大到 2.5 r/min 时,经过 PLSRC 特征波长提取方法所建立的 PLS-DA 模型能够达到更高的判别精度,总体判别率 为 86.54%,三种损伤和完好样本的判别率为 91.67%、 84.62%、84.62%和 85.71%。图 4~图 6 为其壶瓶枣在 三种旋转速度下的最优模型判别结果图。

比较分析得,相对于 SPA,基于 PLSRC 方法进 行特征波长点提取,含有更多的信息量,模型识别相 应有所增加。SPA 算法基于正交投影寻求最低冗余信 息变量组合,但是算法的实现属于寻求局部最优解, 而 PLSRC 利用回归系数对变量进行排序的基础上, 对变量进行逐步筛选,可以有效避免陷入局部最优解。 壶瓶枣损伤在旋转速度为1.5 r/min下的模型最优,在 2.5 r/min 旋转速度下的识别降低,但是与 2.0 r/min 转 速相比,性能下降不大。基于同一建模方法建立的不 同旋转速度的判别模型的正确识别率存在差异,以 PLSRC-PLS-DA 为例,在1.5 r/min 的旋转速度下的模 型识别为90.38%; 当旋转速度增加到2.0 r/min, 模型 的识别率为 88.46%; 2.5 r/min 旋转速度下,准确率降 低到 86.54%。随着旋转速度的增加,光谱的信噪比降 低,最优模型和分类型模型的判别结果均有所下降, 可见旋转速度对壶瓶枣损伤检测有一定影响。

3 结论

3.1 在三种不同旋转速度(1.5 r/min、2.0 r/min和2.5 r/min)下,对壶瓶枣的损伤样本和完好样本的可见近 红外光谱数据进行采集。采用 MF、S-G 平滑、SNV 和 MSC 等13 种方法完成预处理,基于 PLS 模型和评 价指标得到最佳光谱预处理方法。运用 PLSRC 和 SPA 两种方法对各速度下最佳预处理之后的数据进行特征

现代食品科技

Modern Food Science and Technology

波长点的提取,实现数据降维,进而分别建立 PLS-DA、ELM和LS-SVM判别模型。1.5 r/min、2.0 r/min和2.5 r/min旋转速下的最优模型分别为 PLSRC-LS-SVM、PLSRC-PLS-DA和PLSRC-PLS-DA,各模型判别率为92.30%、88.46%和86.54%。其中以1.5 r/min旋转速度下建立的RC-LS-SVM检测模型的正确识别率最高。在2.5 r/min旋转速度下的识别降低。随着旋转速度的增加,损伤识别率呈下降趋势。 3.2 不同旋转速度对壶瓶枣损伤检测存在一定影响, 但是针对目前检测速率低和旋转速度范围窄问题,需 要在接下来的研究中进一步扩大速度范围进行分析。

参考文献

2015

 王斌,鲜枣轻微损伤与可溶性固形物的近红外光谱在线无 损检测研究[D].太古:山西农业大学,2015
 WANG Bin. The study of on-line nondestrauctive detection of the nearinfraed spectra of fresh jujube with subtle bruise and solubtesolids [D]. Taigu: Shanxi Agriculture University,

- [2] Sun Tong, Lin Hong-jian, Xu Hui-rong, et al. Effect of fruit moving speed on predicting soluble solids content of 'Cuiguan' pears (Pomaceae pyrifolia Nakai cv. Cuiguan) using PLS and LS-SVM regression [J]. Postharvest Biology and Technology, 2009, 51(1): 86-90
- [3] 何东健,前川孝昭,森岛博.水果内部品质在线近红外分光 检测装置及实验[J].农业工程学报,2001,17(1):146-148
 HE Dong-jian, Takaaki Maekawa, Hiroshi Morishima.
 Detecting device for on-line detection of internal quality of fruits using near-infrared spectroscopy and the related experiments [J]. Transactions of the Chinese Society of Agricultural Engineering, 2001, 17(1): 146-148
- [4] Clark C, McGlone V, Jordan R. Detection of brownheart in 'Braeburn' apple by transmission NIR spectroscopy [J].
 Postharvest Biology and Technology, 2003, 28: 87-96
- [5] MeGlone V, Martinsen P. Transmission measurement on intact apples moving at high speed [J]. Journal of Near Infrared Spectroscopy, 2004, 12(1): 37-43
- [6] 张淑娟,张海红,赵艳茹,等.鲜枣可溶性固形物可见/近红外 光谱检测建模方法比较[J].农业机械学报,2012,43(3):108-112

ZHANG Shu-juan, ZHANG Hai-hong, ZHAO Yan-ru, et al. Comparison of modeling methods of fresh jujube soluble solids measurement by nir spectroscopy. [J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(3): 108-112

- [7] Moscetti R, Haff R, Aernouts B, et al. Nondestructive detection of insect infested chestnuts based on NIR spectroscopy [J]. Postharvest Biology and Technology, 2014, 87(2): 88-94
- [8] 郭志明,黄文倩,陈全胜,等.近红外光谱的苹果内部品质在 线检测模型优化[J].现代食品科技,2016,32(9):147-153
 GUO Zhi-ming, HUANG Wen-qian, CHEN Quan-sheng, et al. Model optimization for the on-line inspection of internal apple quality by shortwave near-infrared spectroscopy [J].
 Modern Food Science and Technology, 2016, 32(6): 147-153
- [9] 杨一,张淑娟,薛建新,等.郎枣轻微损伤可见/近红外光谱分 波段动态判别研究[J].现代食品科技,2015,31(8):323-328
 YANG Yi, ZHANG Shu-juan, XUE Jian-xin, et al. Dynamic discrimiantion of subtly bruised lang jujubes based on different visible/near-infraed spectral ranges [J]. Modern Food Science and Technology, 2015, 31(8): 323-328
- [10] Nascimento P A M, Carvalho L C, Júnior L C C, et al. Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR) [J]. Postharvest Biology and Technology, 2016, 111: 345-351
- [11] Wu D, Nie P, He Y, et al. Determination of calcium content in powdered milk using near and mid-infrared spectroscopy with variable selection and chemometrics [J] Food and Bioprocess Technology, 2012, 5(4): 1402-1410

[12] 张明锦,杜一平.蒙特卡洛-偏最小二乘回归系数法用于近 红外光谱变量筛选[J].分析试验室,2013,32(2):12-16 ZHANG Ming-jin, DU Yi-ping. Variable selection in near infrared spectroscopic data using monte carlo- partial least square regression coefficient method [J]. Chinese Journal of Analysis Laboratory, 2013, 32(2): 12-16

[13] 赵艳丽,张霁,袁天军,等.近红外光谱快速鉴别不同产地药用植物重楼的方法研究[J].光谱学与光谱分析,2014,34(7): 1831-1835

ZHAO Yan-li, ZHANG Qi, YUAN Tian-jun, et al. Study on rapid identification of mentication of plants of paris polyphlla from different origin areas by nir spectroscopy. [J] Spectroscopy and Spectral Analysis, 2014, 34(7): 1831-1835

- [14] Heras D B, Argüello F, Quesada-Barriuso P. Exploring ELM-based spatial-spectral classification of hyperspectral images [J]. International Journal of Remote Sensing, 2014, 35(2): 401-423
- [15] Zhang N, Shetty D. An effective LS-SVM based approachfor surface roughness prediction in machined surfaces [J]. Neurocomputing, 2016, 198: 35-39