碱法制备的 4 种淀粉-脂肪酸包合物的热力学性质 研究

秦福敏¹,陈海华¹,王雨生^{1,2},胡尊英¹

(1. 青岛农业大学食品科学与工程学院,山东青岛 266109)(2. 青岛农业大学学报编辑部,山东青岛 266109) 摘要:采用差示扫描量热仪、热重分析仪和 X-射线衍射仪研究绿豆淀粉、木薯淀粉、甘薯淀粉和马铃薯淀粉对 HCl/KOH 法制 备的淀粉-脂肪酸包合物糊化和热分解性质、玻璃化转变温度(Tg)、结晶结构等的影响。研究表明,淀粉与脂肪酸复合后晶型变为 V 型。在薯类淀粉-硬脂酸包合物中,马铃薯淀粉-硬脂酸包合物的糊化温度、Tg 和热分解稳定性最高,木薯淀粉-硬脂酸包合物的构化 温度、Tg 和热分解稳定性最低。在薯类淀粉-油酸包合物中,木薯淀粉-油酸包合物的糊化焓值(ΔH)最高,热分解稳定性最小;甘 薯淀粉-油酸包合物的ΔH 最低,热分解稳定性最大。比较马铃薯淀粉和绿豆淀粉,马铃薯淀粉-硬脂酸包合物的糊化温度、热分解稳 定性高于绿豆淀粉-硬脂酸包合物; 马铃薯淀粉-油酸包合物的ΔH 和 T。高于绿豆淀粉-油酸包合物。

关键词:碱法;淀粉-脂肪酸包合物;热性质 文章篇号:1673-9078(2016)11-248-254

DOI: 10.13982/j.mfst.1673-9078.2016.11.038

Thermal Properties of Four Kinds of Starch-fatty Acid Inclusion

Complexes Prepared by Alkaline Method

QIN Fu-min¹, CHEN Hai-hua¹, WANG Yu-sheng^{1,2}, HU Zun-ying¹

(1.College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China)

(2.Editorial Department of Journal of Qingdao Agricultural University, Qingdao 266109, China)

Abstract: The effect of mung bean starch, cassava starch, sweet potato starch, and potato starch on the gelatinization properties, thermal decomposition properties, glass transition temperature (T_g), and crystal structure of starch-fatty acid inclusion complexes prepared by HCl/KOH method were studied by differential scanning calorimeter, thermogravimetric analyzer, and X-ray diffractometer. The results showed that the crystal form of the starches was transformed to V-type after complexation with fatty acids. The highest gelatinization temperature, T_g , and thermal decomposition stability were present in potato starch-stearic acid inclusion complexes, while those of cassava starch-stearic acid inclusion complexes were the lowest. Among the three kinds of root and tube starch-oleic acid inclusion complexes, the cassava starch-oleic acid inclusion complex had the highest gelatinization enthalpy (Δ H) and the lowest thermal decomposition stability, but the sweet potato starch-oleic acid inclusion complex had the lowest Δ H and the highest thermal decomposition stability. The gelatinization temperature and thermal decomposition stability of potato starch-stearic acid inclusion complexes were higher than those of mung bean starch-stearic acid inclusion complexes, while the Δ H and T_g of potato starch-oleic acid inclusion complexes were higher than those of mung bean starch-oleic acid inclusion complexes.

Key words: alkaline method; starch-fatty acid inclusion complexes; thermal properties

淀粉是膳食中主要的碳水化合物,脂肪酸也是重要的食品成分。糊化后的淀粉与脂肪酸复合形成包合物可以抑制淀粉颗粒的膨胀,并提高其结构稳定性, 收稿日期: 2015-12-02

基金项目:山东省自然科学基金项目(ZR2016CM17);山东省高等学校中青 年骨干教师国际合作培养项目(SD-20130825);国家级大学生创新教育立项 (CX-201510435035);青岛农业大学研究生创新计划项目(QYC201419) 作者简介:秦福敏(1990-),女,硕士研究生,研究方向:食品化学 通讯作者:陈海华(1973-),女,博士,教授,研究方向:食品化学 可以作为脂肪替代物、食品稳定剂、药物辅料、化妆品组分和降解包装材料等,应用广泛^[1]。

不同种类的淀粉与脂肪酸复合后的包合物理化性 质不同。Tang 等^[2]研究表明,饱和脂肪酸与小麦淀粉 的复合能力高于不饱和脂肪酸。Harmeet 等^[3]研究发现 粳稻米淀粉与脂质的复合能力高于糯米淀粉。郭东旭 ^[4]研究表明小麦淀粉-油酸复合物的微晶相比例低于 小麦淀粉-硬脂酸包合物。Kawai^[5]等研究发现马铃薯 淀粉-脂肪酸包合物的糊化起始温度随着脂肪酸的碳 链长度的增加而升高,随着脂肪酸不饱和度的增加而 减小。Zabar 等^[6]研究发现马铃薯直链淀粉-亚油酸包 合物的熔融焓值小于马铃薯直链淀粉-硬脂酸包合物。 Kibar 等^[7]研究发现玉米淀粉-油酸包合物的玻璃化转 变温度低于玉米淀粉-硬脂酸包合物。以上研究表明淀 粉和脂肪酸种类均影响淀粉-脂肪酸包合物的性质。然 而目前关于淀粉种类对淀粉-硬脂酸或油酸包合物热 学性质、热分解和结晶结构的影响规律的报道较少。

因此本试验选取木薯淀粉、甘薯淀粉、马铃薯淀 粉及绿豆淀粉等4种淀粉,利用 HCl/KOH 法制备淀 粉-硬脂酸或油酸包合物,采用差示扫描量热仪、热重 分析仪和 X-射线衍射仪系统探究:具有不同晶型的薯 类淀粉,同时研究具有相同晶型、但直链淀粉含量不 同的淀粉即绿豆淀粉和马铃薯淀粉,对淀粉-硬脂酸或 油酸包合物热性质和结晶结构的影响规律,并为其应 用提供理论参考。

1 材料与方法

1.1 试验材料

木薯淀粉(TS,水分 9.5%,直链淀粉 19.4%): 南京甘汁园糖业有限公司;红薯淀粉(SPS,水分 9.9%, 直链淀粉 17.7%)、马铃薯淀粉(PS,水分 9.3%,直 链淀粉 20.9%)和绿豆淀粉(MBS,水分 6.1%,直链 淀粉 36.9%):山东金城股份有限公司;硬脂酸(SA): 天津博迪化工股份有限公司;油酸(OA,纯度 97%): 天津巴斯夫化工有限公司;其余试剂均为分析纯。

1.2 试验仪器

MS New Class 分析天平:瑞士梅特勒-托利多公司;752型紫外可见分光光度计:上海光谱仪器有限公司;DSC1型差示扫描量热仪:瑞士梅特勒-托利多公司;TGA1型热重分析仪:瑞士梅特勒-托利多公司;D8 ADVANCE X-射线衍射仪:德国布鲁克 AXS 有限公司;IS10型傅里叶红外变换光谱分析仪:美国热电尼高力公司。

1.3 试验方法

1.3.1 样品制备

参照 Zabar 等^[8]的方法,称取 6 g 淀粉溶于 80 mL 预热到 90 ℃的 KOH (0.01 mol/L)溶液。称取 0.6 g 脂肪酸溶于 120 mL 预热到 60 ℃的 KOH(0.01 mol/L) 溶液中。将淀粉溶液与脂肪酸溶液混合置于 60 ℃水 浴中,用 0.1 mol/L 的 HCl 调节 pH 至 4.7,搅拌 1 h, 冷却至室温后,以 3000 r/min 离心 20 min,沉淀用 50% 的的乙醇洗涤,重复三次,沉淀物经冷冻干燥即得淀粉-脂肪酸包合物。

1.3.2 淀粉-脂肪酸包合物 X-射线衍射分析

采用单色 Cu-Ka 射线,管电压 40 KV,管电流 40 mA 进行连续扫描,20 范围 4 °~40 °,扫描速度 5 °/min。 记录样品的 X-射线衍射图谱,采用 Jade 5.0 软件计算 样品的结晶度。

1.3.3 淀粉-脂肪酸包合物热学性质的测定

参照 Zabar 等^[6]的方法,取 1.3.1 中样品 7 mg 于 铝坩埚中,加入 21 mg 水,密封后置于室温平衡过夜, 测定淀粉-脂肪酸包合物的糊化性质。扫描温度范围为 30 ℃~135 ℃,升温速率为 5 ℃/min。记录糊化起始 温度(T_o)、糊化峰值温度(T_p)、糊化终止温度(T_c)和糊 化焓值 (Δ H)。

1.3.4 淀粉-脂肪酸包合物玻璃化转变温度的 测定

参照谢涛^[9]的方法,取 1.3.1 中样品 5mg 于铝坩 埚中,按质量比为 1:2 加水,密封后置于室温平衡过 夜,扫描程序:先以 5 ℃/min 的降温速率从 40 ℃扫 描到-20 ℃,在-20 ℃下保持 10 min,再以 5 ℃/min 的升温速率扫描到 40 ℃,记录包合物的玻璃化转变 温度 (Tg)。

1.3.5 淀粉-脂肪酸包合物热重分析

参照 Mansaray 等^[10]的方法,取 1.3.1 中样品 3~5 mg,置于坩埚中,氮气速率为 50 mL/min,升温速率 为 10 ℃/min,加热温度范围为 30~800 ℃,测定样品 热分解曲线。采用 STARe V13.0 软件对热重分析数据 进行处理。

1.4 数据处理

采用 SPSS 17.0 统计分析软件对数据进行方差分 析。

2 结果与讨论

2.1 淀粉-脂肪酸包合物的 X-射线衍射图谱分

析

4 种淀粉及原淀粉-脂肪酸包合物的 X-射线衍射 图和相对结晶度见图 1。原淀粉的种类以及淀粉-脂肪 酸包合物的形成会影响衍射图谱和相对结晶度。由图 1 可知,淀粉与脂肪酸复合后晶体结构发生变化。绿 豆淀粉在 15.3 °、17.3 °、23.2 °处有衍射峰,属于 C 型晶体结构。木薯淀粉和甘薯淀粉在 15.2 °、23.1 °处 有衍射峰,在 17.2 °、18.1 °处有双峰,属于典型的 A

Modern Food Science and Technology

型晶体结构。马铃薯淀粉在 5.6°、15.1°、19.8°和 23.1° 处出现中等强度的衍射峰,在 17.2°处出现强衍射峰, 17.9°处出现弱衍射峰,属于典型的 C 型晶体结构。 各种淀粉与脂肪酸复合后在 13.1°、20.1°处均有衍射 峰,此峰为 V 型结构的特征峰,表明淀粉与脂肪酸复 合后改变了晶体类型,导致包合物的热稳定性也发生 改变。谢涛等^[11]、Lesmes 等^[12]研究发现淀粉与脂肪酸 可形成 V 型包合物。由图 1 还可以看出,4 种原淀粉-硬脂酸包合物在 22°、24°附近各出现了一个衍射峰, 这可能是由于硬脂酸溶解度低、发生聚集所形成的峰 ^[13,14]。Zabar 等^[8]、Lesmes 等^[15]也发现由于未复合的 硬脂酸聚集,导致淀粉-硬脂酸包合物在 22°附近出现 衍射峰。

淀粉-脂肪酸包合物的相对结晶度主要与包合物的形成、支链淀粉侧链的双螺旋等有关^[14]。由图1可以看出,4种淀粉-脂肪酸包合物的相对结晶度均低于对应的原淀粉,这意味着在包合物的形成过程中,原淀粉支链部分的双螺旋结构(即半结晶结构)被破坏,因而包合物的相对结晶度降低。谢涛等^[11]、Chang等^[14]均报道淀粉-脂肪酸包合物的相对结晶度均低于原淀粉。4种淀粉-油酸包合物的相对结晶度均低于相应的淀粉-硬脂酸包合物,表明脂肪酸中的双键可能抑制包合物的结晶。郭东旭^[4]研究表明小麦淀粉-油酸包合物的结晶。郭东旭^[4]研究表明小麦淀粉-油酸包合物的制力结晶度影响最大,对马铃薯淀粉的相对结晶度影响最小。薯类淀粉-硬脂酸包合物中,木薯淀粉-硬脂酸包合物的相对

结晶度最大,甘薯淀粉-硬脂酸包合物最小;而薯类淀粉-油酸包合物中,马铃薯淀粉-油酸包合物的相对结晶度最大,甘薯淀粉-油酸包合物最小。比较马铃薯淀粉和绿豆淀粉,马铃薯淀粉-硬脂酸包合物的相对结晶度低于绿豆淀粉-硬脂酸包合物;马铃薯淀粉-油酸包合物的相对结晶度高于绿豆淀粉-油酸包合物。

Fig.1 X-ray diffraction patterns of starch-fatty acid inclusion complexes

注: 括号中的数字表示相对结晶度。

2.2 淀粉-脂肪酸包合物的热性质分析

表 1 硬脂酸和油酸对不同种类淀粉-脂肪酸包合物热性质的影响

Fable	1 Effect of	f stearic aci	d and oleic	acid on the	thermal prope	erties of differen	nt kinds of starc	h-fatty acid i	nclusion complexes
								•	

	*	主旦	峰1				
J	יוד עם דוי		T _o /°C	T _p /°C	T _c /°C	$\Delta H/(J/g)$	
	Native						
	MBS	-SA	53.43±0.16 ^a	55.27±0.17 ^a	57.50±0.43 ^a	10.48 ± 0.28^{b}	
$\langle \rangle$		-OA					
		Native		54.49±0.16 ^b	56.61±0.37ª		
	TS	-SA	52.97±0.11 ^b			14.62±0.12 ^a	
		-OA					
		Native					
	SPS	-SA	$53.38{\pm}0.02^{ab}$	$55.13{\pm}0.06^{a}$	56.91 ± 0.06^{a}	$15.28{\pm}0.20^{a}$	
		-OA					
	Native						
	PS	-SA	53.36±0.06 ^{ab}	55.12±0.13 ^a	57.18±0.21ª	$10.78{\pm}0.09^{b}$	
		-OA					

揺トの

Modern Food Science and Technology

2016, Vol.32, No.11

ł	¥ P.			峰2	
7-	T 0 0	T _o /°C	T _p /°C	T _c /°C	$\Delta H/(J/g)$
	Native	$56.81{\pm}0.35^{\rm f}$	$64.31{\pm}0.95^{d}$	70.34±2.01 ^b	14.16±0.21 ^b
MBS	-SA	$93.05{\pm}3.03^{b}$	$102.78 {\pm} 3.76^{ab}$	110.79±4.54 ^a	$10.76{\pm}0.02^{d}$
	-OA	93.30±0.13 ^b	$98.62{\pm}0.02b^{bc}$	101.30±0.01 ^a	8.43±0.03 ^e
	Native	$56.83{\pm}0.24^{\rm f}$	$64.13{\pm}0.04^{d}$	70.11±0.22 ^b	15.37±0.25 ^a
TS	-SA	88.22 ± 0.96^{bc}	95.26±0.11°	$101.30{\pm}3.78^{a}$	$6.40{\pm}0.17^{\rm f}$
	-OA	$82.72{\pm}0.65^d$	94.95±0.02 ^c	106.02±0.01ª	$10.60{\pm}0.06^{d}$
	Native	64.72±0.03 ^e	69.72±0.01 ^d	74.80±0.01 ^b	12.89±0.07 ^c
SPS	-SA	87.77 ± 0.67^{cd}	96.01±0.52°	109.63±0.21 ^a	5.56±0.11 ^g
	-OA	84.65±0.88 ^{cd}	94.40±0.18°	103.26±3.17 ^a	$6.87{\pm}0.16^{\rm f}$
	Native	61.40±0.16 ^{ef}	66.79±0.06 ^d	74.67±0.00 ^b	13.18±0.04°
PS	-SA	$102.78{\pm}0.28^{a}$	107.14 ± 3.72^{a}	110.46±2.08 ^a	6.57 ± 0.16^{f}
	-OA	$93.22{\pm}0.23^{b}$	96.38±0.11 ^{bc}	101.30±0.68 ^a	8.81±0.23 ^e

注: 不同的小写字母表示同一列之间存在显著性差异, p<0.05。

原淀粉及淀粉-脂肪酸包合物的 DSC 吸热峰的热特性参数如表 1 所示。从 DSC 吸热峰的热特性参数可以看出,4 种原淀粉及对应的淀粉-油酸包合物在升温过程中,只有 1 个吸热峰,为包合物的糊化吸热峰;4 种原淀粉-硬脂酸包合物在升温过程中,有 2 个不同的吸热峰,其中峰 1 (53 °C~55 °C)为未复合的硬脂酸的吸热峰,这与 X-ray 的结果相一致 (见图 1)。峰 2 (93 °C~110 °C)为原淀粉-脂肪酸包合物的糊化吸热峰^[16]。Kawai 等^[5]研究也表明马铃薯淀粉-硬脂酸包合物有峰 1 存在。

根据淀粉与脂肪酸形成的包合物的熔融温度不同,包合物通常分为两种:I型包合物的熔融温度在100 ℃左右,II型包合物的熔融温度高于110 ℃^[16]。由表1可以看出,4种淀粉-脂肪酸包合物的离解温度均在100 ℃左右,因此推测这4种淀粉-脂肪酸所形成的包合物为I型包合物,这可能是因为本试验中包合物的形成温度较低(60 ℃),因而更有利于形成I型包合物。Karkalas 等^[16]研究发现马铃薯直链淀粉-脂肪酸包合物在60 ℃条件下形成I型包合物。

与原淀粉相比,加入硬脂酸、油酸后,T_o、T_p、 *T_c*均显著升高,这可能是因为脂肪酸与原淀粉、尤其 是与其中的直链淀粉形成了包合物,抑制了淀粉颗粒 的吸水膨胀,从而导致其糊化起始、峰值、终止温度 升高^[12]。这一结果也说明脂肪酸的添加能阻碍淀粉糊 化。谢涛等^[9]研究发现添加脂肪酸后淀粉的糊化温度 升高。表1的结果还表明,各种淀粉-油酸包合物的糊 化温度 T_p 明显低于淀粉-硬脂酸包合物。Kawai 等^[5] 研究表明马铃薯淀粉-油酸包合物的 T_p 值低于马铃薯 淀粉-硬脂酸包合物。比较薯类淀粉-硬脂酸包合物的 糊化温度可知, 马铃薯淀粉-硬脂酸包合物的糊化温度 T_o、T_p、T_c最高, 且 T_p接近 110 ℃; 木薯淀粉-硬脂 酸包合物的 T_p、T_c最低; 甘薯淀粉-硬脂酸包合物的 T_o最低。4 种淀粉-油酸包合物的 T_p均在 94 ℃以上, 但不同淀粉-油酸包合物的 T_p无显著差异。比较马铃 薯淀粉和绿豆淀粉, 马铃薯淀粉-硬脂酸包合物的糊化 温度 T_o、T_p、T_c高于绿豆淀粉-硬脂酸包合物; 马铃 薯淀粉-油酸包合物与绿豆淀粉-油酸包合物的糊化温 度无显著差异。

由表1还可以看出,4种淀粉-脂肪酸包合物的熔 融吸热峰 ΔH 均低于原淀粉。这可能是因为糊化过程 中,淀粉-脂肪酸包合物的形成会释放热量,因而淀粉 糊化时吸收的热量可能被包合物形成所放出的热量逐 渐抵消,表现为 ΔH 降低^[17]。Zhou 等^[17]发现淀粉-脂 肪酸包合物的 ΔH 值低于原淀粉。除绿豆淀粉外,3 种薯类淀粉-油酸包合物的 ΔH 值均高于硬脂酸。 Kawai 等^[5]研究发现马铃薯淀粉-油酸包合物的 ΔH 值 高于马铃薯淀粉-硬脂酸包合物。本文研究结果与其相 一致。3 种薯类淀粉-硬脂酸包合物的 ΔH 差异不显著。 比较薯类淀粉-油酸包合物的 ΔH 可知, 木薯淀粉-油 酸包合物的ΔH最高,其次为马铃薯淀粉-油酸包合物, 甘薯淀粉-油酸包合物的 ΔH 最低。比较马铃薯淀粉和 绿豆淀粉,马铃薯淀粉-硬脂酸包合物的ΔH低于绿豆 淀粉-硬脂酸包合物:马铃薯淀粉-油酸包合物的 ΔH 高于绿豆淀粉-油酸包合物。

2.3 淀粉-脂肪酸包合物的玻璃化转变温度

玻璃化转变是指非晶态聚合物从玻璃态到橡胶态 或从橡胶态到玻璃态的转变,其特征温度称为玻璃化

现代食品科技

Modern Food Science and Technology

转变温度 T_g^[18]。T_g对确定食品的加工及储存条件、预测货架期等具有重要意义。

由表2可知,各种淀粉-脂肪酸包合物的玻璃化转 变温度 Tg 均比原淀粉低,表明硬脂酸和油酸的加入降 低了淀粉的 Tg。这可能是因为脂肪酸的两亲特性影响 包合物中水分子的分布^[7]。谢涛等^[9]、Raphaelides等^[19] 的研究均表明加入脂肪酸能降低淀粉的 Tg。除马铃薯 淀粉-油酸包合物的 Tg 与其对应的硬脂酸包合物基本 一致外,其余3种淀粉-油酸包合物的T_g均高于对应 的硬脂酸包合物。Kibar 等^[7]研究发现玉米淀粉-油酸 包合物的 Tg 低于玉米淀粉-硬脂酸包合物,本文研究 结果与其不一致,这可能是因为本文中淀粉-脂肪酸包 合物的制备方式是 HCl/KOH 法, 而 Kibar 等^[7]采用正 己烷溶解脂肪酸与淀粉混合制备样品。与对应的原淀 粉相比,添加硬脂酸使马铃薯淀粉的 Tg 变化最小,降 低了约0.8℃,对绿豆淀粉的Tg影响最大,降低了约 1.7 °C; 淀粉-油酸包合物中, 添加油酸对木薯淀粉和 甘薯淀粉的 Tg 影响最小。比较薯类淀粉-硬脂酸包合 物的 T_g 可知,马铃薯淀粉-硬脂酸包合物的 T_g 最高, 甘薯淀粉-硬脂酸包合物次之,木薯淀粉-硬脂酸包合

物最低。比较薯类淀粉-油酸包合物的 T_g可知,马铃 薯淀粉-油酸包合物最低,甘薯淀粉-油酸包合物和木 薯淀粉-油酸包合物的 T_g无显著差异。各种淀粉-脂肪 酸包合物的 T_g相比,绿豆淀粉-硬脂酸包合物、绿豆 淀粉-油酸包合物的 T_g均最低。

表 2 硬脂酸和油酸对不同种类淀粉-脂肪酸包合物玻璃化转变

温度的影响

Table 2 Effect of stearic acid and oleic acid on the glasstransition temperature of different kinds of starch-fatty acid

inclusion complexes

样	- E E	T _g /°C ◀		*	羊品	T _g /℃			
	Native	-13.26±0.17 ^{ab}		\leq	Native	-12.98±0.06 ^a			
MBS	-SA	-14.97±0.66°		SPS	-SA	-14.15 ± 0.05^{abc}			
	-OA	-14.65±0.06°			-OA	-13.06±0.25 ^a			
	Native	-12.90±0.16 ^a	J	1	Native	-12.96±0.05 ^a			
TS	-SA	-14.46±0.35debc		PS	-SA	-13.82±0.19 ^{abc}			
	-OA	-13.05±0.64 ^a			-OA	-13.81±0.45 ^{abc}			

注:不同的小写字母表示表中数据之间存在显著性差异,

p<0.05.

表3 硬脂酸和油酸对不同种类淀粉-脂肪酸包合物热分解参数的影响

Table 3 Effect of stearic acid and oleic acid on the thermal decomposition parameters of different kinds of starch-fatty acid inclusion

				com	plexes				
		阶段	£1	阶段	殳 2'	阶段2			
木	羊品	热分解温度 范围/℃	质量损失 /%	质量损失 热分解温度 1% 范围/℃		热分解温度 范围/℃	质量损失 /%	平均降解速率 /(%/min)	
	Native	30~126	12.79			257~356	68.98	6.97	
MBS	-SA	30~122	11.57	122~235	4.58	235 ~ 381	69.14	4.74	
	-OA	30~124	11.64			237 ~ 363	70.76	5.62	
	Native	30~124	13.14			258 ~ 360	67.84	6.65	
TS	-SA	30~123	11.32	123~237	6.34	237 ~ 365	64.63	5.05	
	-OA	30~123	11.47			235 ~ 368	69.75	5.24	
	Native	30~125	13.15			247 ~ 359	68.61	6.13	
SPS	-SA	30~122	9.76	122~244	8.34	244 ~ 364	66.27	5.52	
	-OA	30~123	10.87			242 ~ 367	70.47	5.64	
	Native	30~124	13.25			258 ~ 351	65.84	7.08	
PS	-SA	30~123	10.81	123~247	5.57	247 ~ 367	67.11	5.59	
	-OA	30~123	11.84			235 ~ 364	66.47	5.15	
		阶段3		最快反应速					
样品		热分解温度 范围/℃	质量损失 1%	平均降解速 率/(%/min)	率对应温度 /℃	800 ℃的残 重/%			
	Native	356~492	5.52	0.41	318.5	7.92			
MBS	-SA	381~502	3.17	0.26	315.3	8.82			
	-OA	363~509	7.27	0.50	314.8	9.67			

现代食品科技

Modern Food Science and Technology

接上贝	风						
	Native	360~488	5.68	0.44	319.2	10.04	
TS	-SA	365~493	4.11	0.32	307.7	11.2	
	-OA	368~494	4.41	0.35	312.0	11.06	
	Native	359~483	4.97	0.40	318.7	8.42	
SPS	-SA	364~498	4.38	0.33	318.5	8.67	
	-OA	367~493	4.79	0.38	316.5	9.98	
	Native	351~492	6.77	0.48	315.2	11.1	
PS	-SA	367~486	4.15	0.35	314.7	9.9	
	-OA	364~529	9.98	0.40	308.8	5.98	Xx

2.4 淀粉-脂肪酸包合物的热重分析

原淀粉及原淀粉-脂肪酸包合物的 TGA 的热降解 参数及热降解动力学参数见表 3。由表 3 可以看出, 原淀粉及淀粉-油酸包合物的热重曲线可分为三个阶 段,第一阶段温度范围为 30 ℃~130 ℃,质量损失为 7~13%,主要是由于样品内存在的水分及样品表面结 合水分的除去和小分子碳氢化合物的分解造成的^[10]; 第二阶段温度范围为 230 ℃~370 ℃,主要是淀粉或 淀粉-脂肪酸包合物的解聚和分解过程^[20],平均降解速 率为 5.5%/min,总的质量损失在 64~71%;第三阶段 可能是中间产物的完全分解,对应的温度范围为 370 ℃~500 ℃,这一阶段的总重量损失和平均降解 速率均低于第二阶段,样品的热分解在 500 ℃基本完 成。而淀粉-硬脂酸包合物分为四个阶段,其中 120 ℃ ~240 ℃内的质量损失可能是由于未复合的硬脂酸热 分解造成的。

淀粉的分解温度与其相对分子质量、晶体类型和 化学修饰有关,分解温度高,表明其稳定性高。由表 3 可以看出, 4 种淀粉-脂肪酸包合物的第二阶段 (230 ℃~370 ℃)起始分解温度均小于对应的原淀 粉,表明硬脂酸和油酸的添加降低了淀粉的热分解稳 定性,这可能是由于淀粉与脂肪酸复合后使淀粉的晶 体类型的改变所致。此外,4种淀粉-硬脂酸包合物的 起始分解温度略高于对应的淀粉-油酸包合物的起始 分解温度,这与DSC测定的糊化温度的结果一致。由 表3还可以看出,第二阶段的淀粉-脂肪酸包合物的质 量损失略高于对应的原淀粉,且淀粉-油酸的质量损失 略高于对应的淀粉-硬脂酸。除绿豆淀粉外,3种薯类 淀粉-硬脂酸包合物的热分解稳定性高于相应的油酸 包合物。根据包合物第二阶段分解的起始温度与热分 解稳定性的关系可以看出,在薯类淀粉-硬脂酸包合物 中,马铃薯淀粉-硬脂酸包合物的热分解稳定性最大, 甘薯淀粉-硬脂酸包合物次之,木薯淀粉-硬脂酸包合 物最低。薯类淀粉-油酸包合物中,甘薯淀粉-油酸包

合物的热分解稳定性最大,木薯淀粉-油酸包合物和马 铃薯-油酸包合物的热分解稳定性无显著差异。比较马 铃薯淀粉和绿豆淀粉,马铃薯淀粉-硬脂酸包合物的热 分解稳定性大于绿豆淀粉-硬脂酸包合物;马铃薯淀粉 -油酸包合物的热分解稳定性低于绿豆淀粉-油酸包合物。

4 种淀粉-脂肪酸包合物的最快反应速率对应的温度均低于对应的原淀粉;除木薯淀粉外,其余3种淀粉-硬脂酸包合物的最快反应速率对应的温度略高于对应的淀粉-油酸包合物。800 ℃时剩余的质量主要为灰分。由表3可以看出,除马铃薯淀粉,其余3种淀粉与硬脂酸或油酸包合物在800 ℃时剩余的灰分含量均大于对应的原淀粉;其中,木薯淀粉-硬脂酸或油酸包合物的800 ℃时的灰分含量均为最高。

3 结论

淀粉与脂肪酸复合后晶型均变为V型。4种淀粉-脂肪酸包合物中,甘薯淀粉-脂肪酸包合物相对结晶度 最小。比较各种淀粉-硬脂酸包合物的糊化温度可知, 马铃薯淀粉-硬脂酸包合物的糊化温度最高,木薯淀粉 -硬脂酸包合物的 T_p、T_c最低,甘薯淀粉-硬脂酸包合 物的T。最低。不同淀粉-油酸包合物的T。无显著差异。 3 种薯类淀粉-硬脂酸包合物的 ΔH 差异不显著。在薯 类淀粉-油酸包合物中,木薯淀粉-油酸包合物的 ΔH 最高, 甘薯淀粉-油酸包合物的 ΔH 最低。在薯类淀粉 -脂肪酸包合物中,马铃薯淀粉-硬脂酸包合物的玻璃 化转变温度 T。最高,马铃薯淀粉-油酸包合物的 T。最 低。比较薯类淀粉-脂肪酸包合物的热分解稳定性,马 铃薯淀粉-硬脂酸包合物最大,甘薯淀粉-油酸包合物 最大。比较马铃薯淀粉和绿豆淀粉,马铃薯淀粉-硬脂 酸包合物的糊化温度和热分解稳定性高于绿豆淀粉-硬脂酸包合物;马铃薯淀粉-油酸包合物的相对结晶 度、ΔH和Tg高于绿豆淀粉-油酸包合物。

参考文献

现代食品科技

Modern Food Science and Technology

- Eliasson A C, Kim H R. A dynamic rheological method to study the interaction between starch and lipids [J]. Journal of Rheology, 1995, 39(6): 1519-1534
- [2] Tang M C, Copeland L. Analysis of complexes between lipids and wheat starch [J]. Carbohydrate Polymers, 2007, 67: 80-85
- [3] Guraya H S, Kadan R S, Champagne E T. Effect of rice starch-lipid complexes on *in vitro* digestibility, complexing index, and viscosity [J]. Cereal Chemistry, 1997, 74(5): 561-565
- [4] 郭东旭.小麦淀粉-脂肪酸复合物理化性质的研究[D].河南 农业大学,2014

GOU Dong-xu. Study on physicochemical properties of wheat starch-fatty acid complexes [D]. Henan Agricultural University, 2014

- [5] Kawai K, Takato S, Sasaki T, et al. Complex formation, thermal properties, and *in vitro* digestibility of gelatinized potato starch-fatty acid mixtures [J]. Food Hydrocolloid, 2012, 27: 228-234
- [6] Zabar S, Lesmes U, Katz I, et al. Studying different dimensions of amylose-long chain fatty acid complexes: molecular, nano and micro level characteristics [J]. Food Hydrocolloids, 2009, 23: 1918-1925
- [7] Kibar E A A, Göneng I, Us F. Effects of fatty acid addition on the physicochemical properties of corn starch [J]. International Journal of Food Properties. 2004, 17(1): 204-218
- [8] Zabar S, Lesmes U, Katz I, et al. Structural characterization of amylose-long chain fatty acid complexes produced via the acidification method [J]. Food Hydrocolloids, 2010, 24: 347-357
- [9] 谢涛,张儒.锥栗直链淀粉-脂肪酸包合物的热特性[J].中国 粮油学报,2012,7:38-41
 XIE Tao, ZHANG Ru. Thermal properties of castanea henryi Amylose-fatty acid complex [J]. Journal of the Chinese Cereals and Oils Association, 2012, 7: 38-41
- [10] Mansaray K G, Ghaly A E. Determination of kinetic parameters of rice husks in oxygen using thermogravimetric

analysis [J]. Biomass and Bioenergy, 1999, 17: 19-23

- [11] 谢涛,张儒.锥栗直链淀粉-脂肪酸包合物的结构特性[J].中 国粮油学报,2012,5:31-34
 XIE Tao, ZHANG Ru. Structural properties of castanea henryi amylose-fatty acid complexes [J]. Journal of the Chinese Cereals and Oils Association, 2012, 5: 31-34
- [12] Lesmes U, Shahar H C, Yizhak S, et al. Effects of long chain fatty acid unsaturation on the structure and controlled release properties of amylose complexes [J]. Food Hydrocolloids, 2009, 23: 667-675
- [13] Lalush I, Bar H, Zakaria I, et al. Utilization of amylose-lipid complexes as molecular nanocapsules for conjugated linoleic acid [J]. Biomacro Molecules, 2005, 6(1): 121-130
- [14] Chang F D, He X W, Huang Q. The physicochemical properties of swelled maize starch granules complexed with lauric acid [J]. Food Hydrocolloids, 2013, 32(2): 365-372
- [15] Lesmes U, Mclements D J. Structure-function relationships to guide rational design and fabrication of particulate food delivery systems [J]. Trends in Food Science and Technology, 2009, 20(10): 448-457
- [16] Karkalas J, Morrison W R, Pethrick R A, et, al. Some factors determining the thermal properties of amylose inclusion complexes with fatty acids [J]. Carbohydrate Research, 1995, 268(2): 233-247
- [17] Zhou Z K, Kevin R, Stuart H, et al. Effect of the addition of fatty acids on rice starch properties [J]. Food Research International, 2007, 40(2): 209-214
- [18] Rasanen J, Blanshard M V, Mitchell J R, et al. Properties of frozen wheat doughs at subzero temperatures [J]. Journal of Cereal Science, 1998, 28(1): 1-14
- [19] Raphaelides S N, Arsenoudi K, Exarhopoulos S, et, al. Effect of processing history on the functional and structural characteristics of starch-fatty acid extrudates [J]. Food Research International, 2010, 43: 329-341
- [20] Aggarwal P, Dollimore D. A thermal analysis investigation of partially hydrolyzed starch [J]. Thermochimica Acta, 1998, 319(1): 17-25