不同盐渍条件下刺参体品质的变化及盐渍 动力学研究

宋亮^{1,2}, 毕景然^{1,2}, 李岩¹, 赵晶¹, 刘燕^{1,2}, 董秀萍^{1,2}, 温成荣^{1,2}

(1.大连工业大学食品学院,辽宁大连 116034)(2.国家海洋食品工程技术研究中心,辽宁大连 116034) 摘要:本文研究了在 15%盐水、饱和盐水和干盐三种不同盐渍条件下,刺参品质(体壁组织构造、微观结构、流变学特性及质 构特性)的变化情况,并探讨了刺参盐渍过程的动力学。采用饱和盐水和干盐盐渍的刺参,随着盐渍时间延长,刺参体壁胶原纤维发 生收缩,结构排列趋于紧密,储能模量、损耗模量均逐渐增大,硬度、黏聚性、咀嚼度变大,弹性、回复性逐渐减小;而采用 15% 盐水盐渍的刺参,在盐渍初期,变化趋势与饱和盐水和干盐盐渍相似,盐渍后期刺参体壁胶原纤维膨胀,组织中空隙增大,储能模量、 损耗模量下降,硬度、黏聚性、咀嚼度下降;动力学模型拟合结果表明,高盐度处理的刺参体壁,其盐渍过程符合单向正渗透原理。 本研究表明了不同盐渍条件对刺参品质产生了明显的影响,可为刺参盐渍条件的确定提供科学依据。

关键词: 刺参; 盐渍; 组织构造; 流变特性; 质构特性; 动力学 文章篇号: 1673-9078(2016)10-109-117

DOI: 10.13982/j.mfst.1673-9078.2016.10.018

Study on the Kinetics during Salting Process and Quality Changes of

Stichopus japonicus in Different Salting Conditions

SONG Liang^{1,2}, BI Jing-ran^{1,2}, LI Yan¹, ZHAO Jing¹, LIU Yan¹², DONG Xiu-ping^{1,2}, WEN Cheng-rong^{1,2}

(1.College of Food Science, Dalian Polytechnic University, Dalian 116034, China)

(2.National Engineering Research Center of Seafood, Dalian 116034, China)

Abstract: The changes in the quality of sea cucumber (tissue structure of body wall, microstructure, rheological properties and textural properties) under three salting conditions (15% salt solution, saturated salt solution, and dry salt) were studied in this work, and the evolution kinetics during the salting of sea cucumber were explored. When the sea cucumber samples were treated with saturated salt solution and dry salt, the shrinkage of collagen fibers of sea cucumber body wall occurred, and the structural arrangement tended to became denser. Meanwhile, the storage modulus and loss modulus gradually increased. The hardness, cohesiveness, and chewiness increased, and the elasticity and resilience gradually decreased. When the sample was treated in 15% salt solution, the trend of the changes during the early stage of the salting process was similar to those in the saturated salt solution and dry salt. At the late stage of salting process, collagen fibers of sea cucumber body wall of sea cucumbers treated with high salinity, the salting process followed the principle of one-direction forward osmosis. This study indicates that the different salting conditions have significant impacts on the quality of sea cucumbers, and can provide a scientific basis for the determination of the salting conditions for sea cucumber.

Key words: sea cucumber; salting process; tissue structure; rheological properties; textural properties; kinetics

刺参(Stichopus Japonicus) 是一种重要的海珍品, 我国 2014 年养殖产量已达到 20 万吨,产值达 480 亿 收稿日期: 2015-12-16

基金项目:"十二五"国家科技支撑计划课题(2014BAD04B09),辽宁省高 等学校重大科技平台资助项目(辽教发[2011]191 号)

作者简介:宋亮(1980–),男,博士,讲师,研究方向:水产品精深加工与 高值化利用

通讯作者:温成荣(1984–),男,博士,讲师,研究方向:水产品加工与贮 藏 元。目前,刺参的深加工及产品的品质提高,已成为 产业研究的重点问题之一。盐渍是一种传统的刺参加 工方式,有利于刺参的贮藏,加工方法简单,食用方 式丰富,而且容易被消费者接受,具有广泛的市场需 求。但刺参盐渍一直采用粗放式加工条件,过程控制 主要依靠经验,没有具体的理论依据,因此盐渍刺参 品质不稳定,不利于刺参产业持续发展。

近年来,随着食品工业的发展,传统盐渍技术的 标准化与工业化备受关注。吴素娟^[1]等对三种海鱼盐 渍过程中的理化性质及质构变化进行了研究,发现鱼 肉质构随着盐渍时间而改变,硬度逐渐增大,盐渍24 h 时的弹性最好。Barat^[2]等采用湿盐和干盐两种方法 盐渍鳕鱼,并对盐渍过程中水分、盐分和质构变化等 方面进行比较,并探讨了盐渍过程的基本原理。张芝 芬^[3]等研究了鲳鱼湿腌条件技术,降低了原料鱼在盐 渍过程中发生腐败的风险。这些研究为盐渍水产品的 工业化提供了一些实践参考,但并未从组织结构等方 面深入研究盐渍条件对食品的影响,也未关注食盐的 渗透在盐渍过程中起的重要作用。盐渍过程包括两个 主要传质过程:一是盐从溶液渗入食品组织(刺参体 壁)中,二是食品组织(刺参体壁)中的水渗出,从 而使食品的水分活度降低,以达到抑制腐败变质的作 用^[4]。盐渍过程中,两个传质过程的速率是盐渍食品 的组织构造及品质的重要影响因素^[5,6],如何调控两个 传质过程的动力学是盐渍食品的重要研究内容。

本研究以刺参为原料,研究了三种不同的盐渍条 件对刺参组织构造、流变学特性及质构特性的影响, 并通过建立盐渍过程中水分流失、食盐渗入的动力学 模型,阐释盐渍刺参品质变化过程,以期为刺参的盐 渍加工生产提供参考。

1 材料与方法

1.1 材料与试剂

鲜活刺参,平均体重 110±5 g,购于大连市沙河口 区刘家桥市场。

试剂均为分析纯。

1.2 主要仪器设备

RM2245 石蜡切片机(德国徕卡公司), Olympus BX51 光学显微镜(日本 Olympus), TA. X T. Plus 质 构分析仪(英国 SMS 公司), Discovery HR-1 流变仪 (美国 TA 仪器公司)。

1.3 试验方法

1.3.1 原料处理

鲜活刺参处理:去除内脏及附着于内壁的五条纵筋,清水反复冲洗内壁后,用双蒸水冲洗3遍。

刺参盐渍处理:将预处理后的刺参体壁 70 ℃预 煮 30 min,经自然冷却后,分别置于浓度为 15%食盐 溶液、饱和食盐溶液及干盐中,在4℃下盐渍 2、6、 10、14、18、22 d,每 24 h 更换食盐溶液及干盐,以 保持盐渍过程中盐分浓度不变。

1.3.2 组织构造观察

切块前先洗去刺参表面的盐,切成 5 mm×5 mm×5 mm 的小块,分别经中性甲醛固定,梯度乙醇脱水, 二甲苯透明,浸蜡后得到石蜡组织块;修块后进行石 蜡包埋,制得 6 μm 切片,切片经二甲苯、梯度乙醇 脱蜡复水后,采用 H-E 染色法染色,在 Olympus BX51 光学显微镜下观察组织形态及分布。

1.3.3 微观结构测定

将处理后的样品分别切制成1 cm×1 cm×1 cm 的 小块,放入2.5%戊二醛溶液(0.1 mol/L 磷酸缓冲液) 中固定24 h后,用乙醇(50%~70%~90%~100%)梯 度脱水,二氧化碳临界点干燥,液氮冷冻并脆断,采 用离子溅射镀膜法对样品喷金,扫描电子显微镜观察 其形貌。

1.3.4 流变性质测定

将盐渍之后的样品置于流变仪的载物台上,进行 频率扫描。选择直径为40 mm 的平板,间隙为1 mm, 测试温度为 25 ℃,应变为 1%,频率扫描范围为 0.1~100 Hz,测定储能模量 G'和损耗模量 G"的频率依 赖性。

1.3.5 质构测定

将处理后的样品分别切成 1 cm×1 cm×1 cm 的小 块,进行质构测试。测试参数: TPA 模式,P50 探头, 测试前速率 2 mm/s,测试速率 1 mm/s,测试后速率 1 mm/s,触发值 5 g,形变量 60%。TPA 各指标的检测 及计算参考 Bourne 定义的质构特性参数计算方法^[7]。 1.3.6 水-盐平衡动力学模型建立

水分含量的测定:参考食品安全国家标准食物中水分的测定 GB 5009.3-2010。

食盐含量的测定:参考食品安全国家标准食品中 食盐含量的测定 GB/T 12457-2008。

水分流失动力学模型的建立:根据渗透原理可知, 将具有细胞结构的刺参体壁和盐接触,由于渗透压的 作用,刺参细胞因失水而收缩,最终,经过较长时间 的浸泡后,细胞内的水分向外迁移,并逐渐趋于平衡 ^[8],且水分流失速率又是时间、温度和食盐浓度的函 数,考虑到渗透条件是固定温度和浓度情况下进行的, 仅与时间有关,因此可得公式:

 $WL_{t} = WL_{\infty} - WS \tag{1}$

在方程(1)中,WL∞平衡时水分失去,在固定 的温度和浓度下是一个固定值,而WL和WS都是时 间和水分失去速率的函数。WL/WS 同样是时间和水 分失去速率的函数,而水分失去速率又是时间、温度 和浓度的函数。考虑到渗透条件是固定温度和浓度情 况下进行的,因此WL/WS 仅仅与时间有关,两者之 间有一定关系,可以表示为:

Modern Food Science and Technology

2016, Vol.32, No.10

$$\frac{WL}{WS} = S_1 t \tag{2}$$

$$WL_{t} = \frac{S_{1}t(WL_{\infty})}{1+S_{1}t}$$
(3)

S₁为与刺参体壁水分流失有关的常数。

食盐渗入动力学模型的建立:根据渗透原理,同 理可得刺参体壁食盐渗入量 SG_t可以表示为:

$$SG_{t} = \frac{S_{2}t(SG_{\infty})}{1+S_{2}t}$$
(4)

式中 SG_t 为 t 时刻刺参体壁的食盐渗入量, SG_{∞} 代表平衡时 刺参体壁的食盐渗入量, S_2 与食盐渗入刺参体壁有关的常数^[9]。

数据处理:采用非线性拟合方法对水分含量及食盐含量运用 Matlab 进行数据处理。

2 结果与讨论

2.1 不同盐渍条件对刺参体壁组织构造的影

响

不同盐渍条件处理的刺参体壁组织构造观察结果 如图 1a~s 所示。对照组图 1a 所示,为经盐渍处理的 刺参体壁中存在大量的胶原纤维,呈细长丝状,平行 方向排列,且纤维间空隙较大,这与 Trotter 等^[10]对刺 参形态学和生物力学的观察结果一致。以不同盐渍方 式盐渍 2 d 后,刺参体壁组织如图 1b、图 1h 和图 1n 所示,经15%盐水盐渍的刺参体壁组织构造被破坏程度最小,仍可以观察到细长丝状的胶原纤维丝,纤维间的空隙比饱和盐水和干盐盐渍的大,说明胶原纤维网状结构未被严重破坏;干盐盐渍的刺参体壁组织构造破坏最为严重,这可能是由于刺参体壁直接和食盐接触,导致食盐的渗透速度较快,引起胶原纤维快速地变性和析出。盐渍6~14 d时,三种盐渍处理的刺参体壁纤维均逐渐出现局部凝集、收缩现象,纤维之间的空隙逐渐变小。盐渍后期,15%盐水盐渍的刺参体 壁如图 1g 所示,细长的胶原纤维溶胀,结构中出现大面积的空隙,而饱和盐水及干盐盐渍的刺参体壁组织

有学者研究表明干盐或高浓度盐水盐渍可使纤 维横截面收缩,且干盐比湿盐盐渍收缩更严重^[11]。而 本实验则发现了胶原纤维的凝集,推测其组织构造变 化可能与盐的浓度有关,高盐浓度盐渍导致胶原纤维 收缩,低浓度导致胶原纤维簇内部组织松散,吸水溶 胀;推测存在一个盐浓度临界值,大于此浓度盐渍胶 原纤维收缩,反之,胶原纤维膨胀。

图 1 不同盐渍条件下刺参体壁组织构造变化

Fig.1 Change in the tissue structure of sea cucumber under different salting conditions

注: a, 对照组; b~g, 刺参体壁经 15%盐水盐渍 2、6、10、14、18、22 d 的组织构造; h~m, 刺参体壁经饱和盐水盐渍 2、6、10、14、18、22 d 的组织构造; n~s, 刺参体壁经干盐盐渍 2、6、10、14、18、22 d 的组织构造。放大倍数均为 100 倍。

2.2 不同盐渍条件对刺参体壁微观结构的影

响

利用扫描电镜对不同盐渍加工之后的刺参体壁组 织构造进行观察,结果如图2所示。湿盐(15%盐水及 饱和盐水)盐渍初期,如图2b、h所示,可明显观察到 刺参体壁中胶原纤维,且纤维细长,分布有一定的方 向性,结构较为均匀有序;而以干盐盐渍2d的刺参 体壁中的胶原纤维出现严重的相互交织现象。随着盐 渍时间延长,刺参体壁胶原纤维相互交织聚集,组织 构造致密。由于盐渍条件不同,刺参体壁水分与体外 盐分交换速度不同,导致在盐渍后期刺参体壁微观结 构变化明显。如图 2f、g,经 15%盐水盐渍的刺参体 壁微观结构中纤维直径明显变粗、凝结、收缩,纤维 间空隙加大,出现大量疏孔结构;经饱和盐水盐渍 18~22 d 的刺参体壁如图 2l、m 所示,丝状纤维消失, 纤维断面出现片状单元且易断裂;以干盐盐渍 10 d 后 的刺参体壁微观结构如图 2p 所示,组织结构致密,这 可能是由于刺参体壁胶原纤维结合水不断向自由水转 变^[12],同时水分与盐分交换速度过快,水分大量流失, 胶原纤维丝快速凝集、收缩,所以形成致密结构。

图 2 不同盐渍条件下刺参体壁微观结构变化

Fig.2 Change in the microstructure of sea cucumber under different salting conditions

注: a.对照组; b~g, 刺参体壁经 15%盐水盐渍 2、6、10、14、18、22 d 的组织构造; h~m, 刺参体壁经饱和盐水盐渍 2、6、 10、14、18、22 d 的组织构造; n~s, 刺参体壁经干盐盐渍 2、6、10、14、18、22 d 的组织构造。500 μm。

Fig.3 Rheological properties of sea cucumber subjected to

different salting conditions

注: a和b分别为 15%盐水盐渍过程中刺参体壁储能模量、损耗模量的变化; c和d分别为饱和盐水盐渍过程中刺参体壁储 能模量、损耗模量的变化; e和f分别为干盐盐渍过程中刺参体 壁储能模量、损耗模量的变化。

2.3 不同盐渍条件对刺参体壁流变特性的影

响

不同盐渍条件刺参体壁组织流变特性如图 3 所示。所有实验样品的 G'>G",且盐渍相同时间样品的 G'由大到小为干盐>饱和盐水>15%盐水,一般情况 下,弹性模量与弹力相对应,弹性模量大,刚性大,变形就小^[13]。采用 15%盐水盐渍的刺参体壁的 G'和 G"在前 6 d 呈现上升的趋势,6~14 d 趋于稳定,随后 二者都随盐渍时间延长而快速降低至接近于对照组水 平;采用饱和食盐水盐渍的刺参体壁的 G'和 G"均随盐渍时间的增长而升高,0~6 d 的时候快速升高,随 后升高速度减慢;采用干盐盐渍的刺参体壁的 G'和 G"均随盐渍时间的增长而升高,G'的升高速度较平 稳,而 G"在升高的过程中,0~2 d,6~10 d,14~18 d 升高较快。这些变化与 2.1 和 2.2 组织结构的变化相吻 合。

2.4 不同盐渍条件对刺参体壁 TPA 质构特性

的影响

刺参体壁在不同盐渍条件下的质构特性变化如表 1所示。随着盐渍时间的延长,不同实验组刺参的弹性、 回复性逐渐降低,这与陈燕等^[14]研究结果相似。且盐 渍的相同时间,弹性和回复性由强到弱为15%盐水> 饱和盐水>干盐。这与不同盐浓度盐渍过程中, 刺参 体壁的组织被破坏程度和水分流失程度有关。对于硬 度、黏聚性与咀嚼度而言,15%盐水盐渍的刺参体壁 先升高,在6~14 d期间变化较小,随后明显降低;而 饱和盐水和干盐处理组都是随着盐渍时间的延长而升 高。郝梦甄等^[15]对超高压烫漂刺参体壁的质构研究表 明,随着贮藏期延长,刺参体壁的硬度、黏聚性和咀 嚼度降低,而本研究结果与其相反,这可能是由于盐 渍过程中, 胶原蛋白变性, 刺参体壁中水分和环境中 盐进行物质交换,水分流失,盐分升高,组织结构中 的空隙被盐分子堆积,变得紧密。而15%盐水盐渍时, 由于刺参组织胶原蛋白变性、组织结构变化的同时, 水分流失较饱和盐水和干盐处理组少,因此,硬度、 黏聚性和咀嚼度在后期反而降低,这与郝梦甄等研究 结果相近。

Modern Food Science and Technology 表1 不同盐渍条件下刺参体壁 TPA 测定结果

Table 1 TPA of sea cucumber samples subjected to different salting conditions										
方法	时间/d	硬度/g	弹性	黏聚性	回复性	咀嚼度/g				
对照		8650.37±1755.51	0.68±0.13	0.42±0.10	0.503±0.12	5702.15±1120.04				
	2	9010.84±1806.67	0.65±0.15	0.49±0.09	0.477±0.11	6019.52±1092.35				
	6	TPA of sea cucumber samples subjected to different salting conditions	6942.14±1456.25							
150/ th 1/	10	12058.13±2510.26	0.6±0.11	Abjected to different salting conditions $\&lightharpointside elgeld elgeldglglglglglglglglglglglglglglglglgl$						
15%盐水	14	12473.26±2289.16	0.56±0.12	0.6±0.09	o different salting conditions					
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.51±0.09	0.47±0.12	0.403±0.10	6863.89±1308.24					
	22	8645.2±2030.11	0.48 ± 0.10	0.43±0.11	0.397 ± 0.09	6630.51±1403.21				
	2	12360.47±2719.09	0.61±0.13	0.51±0.10	0.449±0.09	6329.35±1309.30				
	6	16927.13±3182.29	$\overline{\psi g/g}$ \overline{Pe} $\overline{Ak} Rel$ $\overline{\Box g/e}$ $\overline{\Box g}$ 8650.37±1755.510.68±0.130.42±0.100.503±0.125702.19010.84±1806.670.65±0.150.49±0.090.477±0.116019.51240.82±2016.670.61±0.090.54±0.110.443±0.136942.12058.13±2510.260.6±0.110.58±0.100.429±0.097013.22473.26±2289.160.56±0.120.6±0.090.426±0.087069.39647.23±1589.210.51±0.090.47±0.120.403±0.106863.88645.2±2030.110.48±0.100.43±0.110.397±0.096630.52360.47±2719.090.61±0.130.51±0.100.449±0.096329.36927.13±3182.290.54±0.090.58±0.120.405±0.117234.220041.52±3856.260.47±0.100.64±0.130.357±0.098069.921531.47±4440.570.45±0.080.68±0.130.327±0.078826.42230.25±4821.920.44±0.090.71±0.150.315±0.059032.82641.03±3992.530.43±0.110.72±0.130.309±0.089067.25629.31±3649.050.57±0.130.55±0.090.422±0.116843.320163.25±5307.860.49±0.140.64±0.110.365±0.098019.120809.23±4043.510.46±0.100.69±0.150.313±0.089103.221402.36±4370.180.45±0.110.73±0.140.309±0.099307.922068.91±4582.360.43±0.090.72±0.160.305±0.089298.5	7234.28±1028.22						
46 t + 12	10	20041.52±3856.26		8069.96±1698.31						
饱和盐水	14	21531.47±4440.57	0.45 ± 0.08	0.68±0.13	回复性咀嚼度/g0 0.503 ± 0.12 5702.15 ± 1120.04 99 0.477 ± 0.11 6019.52 ± 1092.35 1 0.443 ± 0.13 6942.14 ± 1456.25 0 0.429 ± 0.09 7013.20 ± 1392.63 9 0.426 ± 0.08 7069.31 ± 1502.95 2 0.403 ± 0.10 6863.89 ± 1308.24 1 0.397 ± 0.09 6630.51 ± 1403.21 0 0.449 ± 0.09 6329.35 ± 1309.30 2 0.405 ± 0.11 7234.28 ± 1028.22 3 0.357 ± 0.09 8069.96 ± 1698.31 3 0.327 ± 0.07 8826.41 ± 1774.68 5 0.315 ± 0.05 9032.84 ± 1802.34 3 0.309 ± 0.08 9067.22 ± 1784.52 99 0.422 ± 0.11 6843.31 ± 1414.13 1 0.365 ± 0.09 8019.10 ± 1564.96 5 0.313 ± 0.08 9103.24 ± 1729.55 4 0.309 ± 0.08 9298.51 ± 1860.67 4 0.300 ± 0.08 9311.87 ± 1672.24					
	18	22230.25±4821.92	0.44±0.09	0.71±0.15						
	22	22641.03±3992.53	0.43±0.11	0.72±0.13	0.309±0.08	9067.22±1784.52				
	2	15629.31±3649.05	0.57±0.13	0.55±0.09	0.422±0.11	6843.31±1414.13				
	$\frac{1}{2k} + \frac{1}{10} + \frac{1}{10} + \frac{1}{2k} $	0.365±0.09	8019.10±1564.96							
千卦	10	20809.23±4043.51	0.46±0.10	0.69±0.15	0.313±0.08	9103.24±1729.55				
<u>m</u>	14	21402.36±4370.18	0.45±0.11	0.73±0.14	0.309±0.09	9307.97±1903.87				
	18	22068.91±4582.36	0.43±0.09	0.72±0.16	0.305±0.08	9298.51±1860.67				
	22	22257.35±4452.80	0.41±0.10	0.74±0.14	0.300±0.08	9311.87±1672.24				

1 TDA of see an annul on some los subjected to different solting can diffe

2.5 不同盐渍过程中刺参体壁水分流失及食

Fig.4 Water loss (WL) kinetic curve of sea cucumber body wall 注: a,以15%盐水盐渍过程中刺参体壁水分流失的动力

学曲线; b, 以饱和盐水盐渍过程中刺参体壁水分流失的动力学 曲线; c, 以干盐盐渍过程中刺参体壁水分流失的动力学曲线。

对刺参体壁不同盐渍过程中水分流失动力学模型 进行数值求解结果见图 4,失水率实验结果与模型计 算误差分析见表 2。15%盐水、饱和盐水、干盐盐渍 条件下的刺参体壁失水率通过拟合,所得水分流失动 力学方程分别为:

$$WL = \frac{0.1369 \ t}{1 + 1.6184 \ t}$$

WL_∞=0.1369 g/g, S₁=1.6184, 平均相对误差为 1.27%;

现代食品科技

$$WL = \frac{0.1015 \ t}{1 + 0.5080 \ t}$$

 $WL = \frac{0.3450 \ t}{1 + 1.3043 \ t}$

WL_∞=0.1015 g/g, S₁=0.5080, 平均相对误差为 0.24%:

WL_∞=0.3450 g/g, S₁=1.3043, 平均相对误差为

0.36%。

表 2 不同盐渍条件下刺参体壁失水率实验值与模型值计算误差分析

Table 2 Error analysis between experimental values and the values from model calculation on water loss of sea cucumber body wall

under different salting conditions										
む 清时间	15%				饱和盐水			干盐		
/d	实验值 /%	模型计算值 /%	相对误差 /%	实验值 /%	模型计算值 /%	相对误差 /%	实验值 /%	模型计算值 /%	相对误差 /%	
2	4.65	4.67	0.51	15.95	15.94	-0.07	19.09	19.12	0.15	
6	6.89	6.66	-3.35	18.38	18.43	0.26	23.67	23.45	-0.92	
10	7.17	7.28	1.50	18.96	19.02	0.32	24.43	24.56	0.55	
14	7.61	7.58	-0.39	19.38	19.29	-0.48	25.11	25.07	-0.14	
18	7.68	7.76	1.02	19.41	19.44	0.15	25.29	25.37	0.31	
22	7.81	7.88	0.85	19.57	19.54	-0.17	25.54	25.56	0.07	

对刺参体壁不同盐渍过程中食盐渗入动力学模型 进行数值求解结果见图 5,盐含量的实验结果与模型 计算结果误差分析见表 3。15%盐水、饱和盐水、干 盐盐渍条件下的刺参体壁盐含量通过拟合,所得的食 盐渗透动力学方程分别为:

$$S_t G = \frac{27.0301t}{1 + 2.2619}$$

(SG_∞=27.0301g/g, S₂=2.2619, 平均相对误差为 1.27%);

$$S_t G = \frac{21.1645t}{1+1.0500t}$$

(SG_∞=21.1645, S₂=1.0500, 平均相对误差为

1.36%。);

$$S_t G = \frac{50.2537 t}{1 + 2.3229 t}$$

(SG_∞=50.2537, S₂=2.3229, 平均相对误差为 0.23%)。

综合刺参体壁盐渍过程中的水分流失、食盐渗入 的动力学方程,证明高浓度盐的盐渍过程更符合正渗 透原理,可以通过渗透原理准确的预示该盐渍过程中 的水分流失及食盐渗入的程度,并且通过计算方程, 发现盐浓度越高,刺参体壁在盐渍平衡状态下失水越 多,盐渗入量越大。而在盐含量较低的情况下,如15% 盐水盐渍后期,刺参体壁水分流失、食盐渗入的动力 学过程不能应用简单的渗透原理解释,这可能是因为 低浓度盐盐渍时,并未使刺参体壁自溶酶完全失活, 可能存在缓慢的自溶现象;且在低盐盐渍的后期,伴 随着复杂的化学、微生物等的变化,引起组织结构的 变化。

Fig.5 Kinetic curve of salt gain (SGt) in sea cucumber body wall

现代食品科技

Modern Food Science and Technology

2016, Vol.32, No.10

注: a,以15%盐水盐渍过程中刺参体壁食盐渗入的动力 曲线; c, b 学曲线; b,以饱和盐水盐渍过程中刺参体壁食盐渗入的动力学

曲线; c, 以干盐盐渍过程中刺参体壁食盐渗入的动力学曲线。

表 3 不同盐渍条件下刺参体壁盐含量实验值与模型计算值误差分析

Table3 Error analysis between experimental values and the values from model calculation on salt content of sea cucumber body wall under different salting conditions

under unterent saturig condutoris										
盐渍时间 _ /d	15%				饱和盐水			干盐		
	实验值 /%	模型计算值 /%	相对误差 /%	实验值 /%	模型计算值 /%	相对误差 /%	实验值 /%	模型计算值 /%	相对误差 /%	
2	9.91	9.79	-1.27	13.60	13.65	0.40	17.80	17.80	0.01	
6	10.54	11.13	5.56	17.95	17.40	-3.09	20.10	20.19	0.42	
10	11.49	11.44	-0.36	18.03	18.40	2.10	20.98	20.74	-0.14	
14	11.44	11.58	1.27	18.58	18.87	1.59	20.95	20.99	0.20	
18	12.03	11.66	-3.01	19.24	19.14	-0.49	21.14	21.13	-0.05	
22	11.98	11.71	-2.23	19.41	19.32	-0.46	21.10	21.22	0.56	

3 结论

作为一种传统的水产食品,盐渍刺参具有很好的 发展前景,工业化、标准化的生产是目前的发展趋势, 保证其拥有良好的品质具有非常重要的意义。国内外 对盐渍刺参的研究较少,今后的发展重点应该是把条 件优化的理论进一步深化,应用到实际生产中。本文 通过研究不同盐渍条件处理的刺参组织构造、微观结 构、流变及质构特性,并对不同盐渍条件的动力学进 行分析,发现不同盐渍处理条件能够对刺参产品的品 质产生明显的影响,低浓度食盐(15%)盐渍不易调 控,体壁组织结构与质构特性容易被破坏,14d后就 出现品质降低;而高浓度食盐盐渍易于调控,刺参体 壁组织与质构特性更为稳定,更有利于刺参加工的工 业化发展。后续将对盐渍条件进行进一步的优化,为 大规模生产高品质的刺参产品提供技术支持。

参考文献

- 吴素娟,颜小燕,蒋志红,等. 三种海鱼腌制过程中的理化性 质及质构变化[J].食品安全质量检测学报,2014,5(1):83-88
 WU Su-juan, YAN Xiao-yan, JIANG Zhi-hong, et al. Study on changes of physicochemical properties and texture of three marine fishes during salting process [J]. Journal of Food Safety & Quality, 2014, 5(1): 83-88
- [2] Barat J M, Rodríguez-Barona S, André A, et al. Cod salting manufacturing analysis [J]. Food Research International, 2003, 36(5): 447-453
- [3] 张芝芬,吴汉民,黄晓春,等.糟醉鲳鱼的工艺研究[J].东海海 洋,2001,19(2):69-72
 ZHANG Zhi-fen, WU Han-min, HUANG Xiao-chun, et al. Study on the process of pickling pomfret with grains [J].

Donghai Marine Science, 2001, 19(2): 69-72

- [4] Endo S, Pfennigsdorff A, Goss K. Salting-out Effect in aqueous NaCl solutions: Trends with size and polarity of solute molecules [J]. Environmental Science & Technology, 2012, 46(3): 1496-1503
- [5] Thorarinsdottir K A, Arason S, Sigurgisladottira S, et al. The effects of salt-curing and salting procedures on the microstructure of cod (*Gadus morhua*) muscle [J]. Food Chemistry, 2011, 126(1): 109-115
- [6] Jónsdóttir R., Sveinsdottir K, Magnusson H, et al. Flavor and quality characteristics of salted and desalted cod (*Gadus morhua*) produced by different salting methods [J]. Journal of Agricultural and Food Chemistry, 2011, 59(8): 3893-3904
- [7] Veland J O, Torrissen O J. The texture of atlantic salmon (*Salmo salar*) muscle as measured instrumentally using TPA and Warner-brazler shear test [J]. Journal of the Science of Food and Agriculture, 1999, 79(12): 1737-1746
- [8] Chabbouh M, Ahmed S B H, Farhat A, et al. Studies on the salting step of *T*unisian *kaddid* meat: Experimental kinetics, modeling and quality [J]. Food and Bioprocess Technology, 2012, 5(5): 1882-1895
- [9] Farber J M. Microbiological aspects of modified-atmosphere packaging technology-A review [J]. Journal of Food Protection, 1991, 54(1): 58-70
- [10] Trotter J A, Lyons-Levy G, Thurmond F A, et al. Covalent composition of collagen fibrils from the dermis of the sea cucumber, cucumaria frondosa, a tissue with mutable mechanical properties [J]. Comparative Biochemistry and Physiology Part A: Physiology, 1995, 112(3-4): 463-478
- [11] Birkeland S, Haarstad I, Bjerkeng B. Effects of salt-curing procedure and smoking temperature on astaxanthin stability

Modern Food Science and Technology

2016, Vol.32, No.10

in smoked salmon [J]. Journal of Food Science.2004, 69(4): 198-203

- [12] 侯虎,陈铁军,彭喆,等.超高压处理对海参体壁凝胶稳定性及其劣化的影响[J].农业工程学报,2014,30(22):316-322
 HOU Hu, CHEN Tie-jun, PENG Zhe, et al. Stability and degradation regulation of body wall gel of sea cucumber treated by high hydrostatic pressure [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(22): 316-322
- [13] Matumoto S, Yamano S. The Rheological of food in: The tenderness of chicken meat [M]. Tokyo: Food Material Research Institute Press, 1987
- [14] 陈燕,高昕,李昭勇,等.不同加热条件下盐渍刺参组织构造 和流变学特性的变化[J].食品工业科技,2009,30(2):132-135
 CHEN Yan, GAO Xin, LI Zhao-yong, et al. Changes of tissue structure and rheological properties of stichopus japonicus in different heating conditions [J]. Science and Technology of Food Industry, 2009, 30(2): 132-135
- [15] 郝梦甄,胡志和.超高压和盐渍泡发处理海参的质构和功能成分比较研究[J].食品科学,2013,34(5):115-119
 HAO Meng-zhen, HU Zhi-he. Comparative effects of uhp and salt soaking on the texture and functional composition of sea cucumber (*Stichopus japonicus*) [J]. Food Science, 2013, 34(5): 115-119