基于 PCR-DGGE 技术的四川麸醋固态发酵过程中 微生物群落分析

彭杨¹, 张奶英¹, 何利^{1,2}, 陈姝娟^{1,2}, 敖晓琳^{1,2}, 刘书亮^{1,2}

(1.四川农业大学食品学院,四川雅安 625014)(2.农产品加工及贮藏工程四川省重点实验室,四川雅安 625014) 摘要:为了解四川麸醋固态发酵过程中微生物群落变化规律,采用聚合酶链式反应-变性梯度凝胶电泳(PCR-DGGE)技术对其 固态发酵过程中真菌和细菌的多样性进行分析。结果表明,四川麸醋固态发酵过程中优势真菌主要有酿酒酵母(Sac. cerevisiae)、扣 囊复膜孢酵母(Sac. fibuligera)、伊萨酵母(Iss. hanoiensis)、黑曲霉(Asp. niger)、草青霉菌(Pen. oxalicum)以及不可培养真菌(Uncultured fungus);主要细菌有嗜酸乳杆菌(Lac. acidophilus)、葡萄糖醋杆菌(Glu. oboediens)、巴氏醋杆菌(Ace. pasteurianus)、甲醇酸单胞菌 (Aci. methanolica)、不可培养细菌(Uncultured bacterium)、不可培养芽孢杆菌(Uncultured Bacillus sp.)。PCR-DGGE技术可鉴别醋醅中多种不可培养微生物,四川麸醋固态发酵过程优势微生物种类多、丰度高,菌系十 分复杂,多种微生物交替生长,但整体群落结构变化不明显。

关键词:四川麸醋; PCR-DGGE; 微生物群落; 固态发酵 文章篇号: 1673-9078(2016)8-171-177

DOI: 10.13982/j.mfst.1673-9078.2016.8.026

PCR-DGGE-based Analysis of the Microbial Community in Sichuan Bran

Vinegar during Solid-state Fermentation

PENG Yang¹, ZHANG Nai-ying¹, HE Li^{1,2}, CHEN Shu-juan^{1,2}, AO Xiao-lin^{1,2}, LIU Shu-liang^{1,2}

(1.College of Food Science, Sichuan Agricultural University, Ya'an 625014, China) (2.Key Laboratory of Agricultural Products Processing and Preservation Engineering, Sichuan Agricultural University, Ya'an 625014, China)

Abstract: To profile the changes in the microbial community during Sichuan bran vinegar fermentation, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was employed to analyze the diversity of bacteria and fungi during the solid-state fermentation process. The results showed that during the fermentation, the dominant fungi were *Saccharomyces cerevisiae, Saccharomycopsis fibuligera, Issatchenkia hanoiensis, Aspergillus niger, Penicillium oxalicum,* and uncultured fungus, and the main bacteria were *Lactobacillus acidophilus, Gluconacetobacter obediens, Acetobacter pasteurianus, Acidomonas methanolica,* uncultured bacterium, uncultured *Bacillus* sp., and uncultured *Lactobacillus* sp. Thus, the PCR-DGGE technique allowed identifying a variety of uncultured microorganisms in the fermentation substrate. The microbial flora during the fermentation was complex, with different microorganisms dominating at different phases of the process; however, the overall microbial structure did not change significantly during the fermentation process.

Key words: Sichuan bran vinegar; polymerase chain reaction denaturing gradient gel electrophoresis; microbial community; solid-state fermentation

食醋的风味品质与酿造工艺、原料和环境密切相关。四川麸醋尤以保宁醋为代表,是中国四大名醋之一,因其口味独特、醋香浓郁,具有独特的药理作用, 是调味和保健于一体的传统调味品。它以麸皮为主料, 收稿日期: 2015-09-02

基金项目:四川省农业科技成果转化资金项目(14NZ0012);四川省科技厅 科技支撑计划项目(2013NZ0055)

作者简介: 彭杨(1992–),女,在读研究生,研究方向: 食品微生物 通讯作者: 刘书亮(1968–),男,博士,教授,研究方向: 食品微生物与发 酵工程研究 采取糖化、酒化、醋化同池进行的生料固态开放式自 然发酵工艺,通过人工或机械定时翻醅来管理发酵过 程。然而目前对四川麸醋发酵过程中特有微生物群落、 品质形成机理与调控、风味物质构成及保持的了解都 不十分清楚,一定程度制约了四川麸醋的发展。我国 传统食醋酿造微生物的研究主要为纯培养方法,据统 计实验室能够纯培养的微生物仅占环境样品的 1%~10%^[1]。近年来,聚合酶链式反应-变性梯度凝胶 电泳(PCR-DGGE)技术已被广泛应用于传统食品酿 造过程中微生物群落的分析。该方法免去了微生物培 养过程,通过 PCR 扩增样品中的 16S rDNA/18S rDNA 而序列有差异的 DNA 序列,获得传统食品发酵过程 中微生物的群落结构、丰度及变化规律。该方法已在 酒糟酒曲^[2]、泡菜^[3]、乳制品^[4]等传统食品中微生物群 落多样性分析方面进行了应用。许伟^[5]等运用 DGGE 对镇江香醋、朱扬玲^[6]等对浙江玫瑰醋发酵过程中的 微生物群落进行分析,初步分析了发酵过程微生物群 落结构的变化趋势,但运用此技术对四川麸醋的微生 物群落多样性分析还未见报道。因此,本文旨在以四 川麸醋醋醅为研究对象,运用 PCR-DGGE 技术研究 发酵过程中微生物群落多样性变化并分析其优势群落 及群落演替规律,为四川麸醋发酵生产提供理论依据。

1 材料与方法

1.1 材料

1.1.1 样品

样品采集于四川某麸醋厂固态发酵池发酵过程的 醋醅,取样时间分别为发酵第1、3、5、7、9、12、15、 18、21、24、27、30 d,取样点距醋醅表层40~50 cm, 每份约1000 g装于无菌食品袋中低温运回实验室,置于 4℃冰箱保存。

1.1.2 实验试剂

OMGEA真菌DNA提取试剂盒,购于美国OMGEA 公司;DNA纯化回收试剂盒,购于大连宝生物公司; 溶菌酶、DL 2000 DNA Marker、2×Mix、Goldview、 TMDNA、6×Loading Buffer均购于大连宝生物公司;硝 酸银、四甲基乙二胺、丙烯酰胺、双丙烯酰胺、EDTA、 50×TAE缓冲液、磷酸盐缓冲液、TE缓冲液等,为分析 纯或分析纯配制试剂。

1.1.3 主要实验仪器

TE412-L精密电子天平,北京赛多利斯仪器系统有限公司; My Cycler[™] Thermal Cycler PCR仪, Bio-Rad 公司; Thermo BR4i型冷冻离心机, Thermo Electron Corporation; Gel Doc XR凝胶成像仪,美国Bio-Rad公 司; 变性梯度凝胶电泳仪,美国C.B.S.Scientific公司; MINI-SUB CELL.GT电泳仪, Bio-Rad公司。

1.2 方法

- 1.2.1 醋醅总DNA提取
- 1.2.1.1 样品前处理

称取醋醅样品 20 g 置于装有 200 mL 0.1 mol/L, pH 7.0 磷酸盐缓冲液(PBS)的无菌均质袋中,中速 均质 3 min,于无菌室中用灭菌的四层纱布过滤,收 集滤液,滤液 3000 r/min 离心 5 min,收集上清液, 的可变区序列,进一步采用 DGGE 分离片段长度相同 10000 r/min 高速离心 5 min,弃上清,收集沉淀,沉 淀用 PBS 洗涤 3 次;所得沉淀即为菌体,菌体用 TE 缓冲液重悬并分装于 1.5 mL 的 EP 管中,-20 ℃冻存 备用。

1.2.1.2 总 DNA 提取

将样品菌体解冻、重悬、高速离心后去上清液, 采用液氮研磨、溶菌酶破壁、结合 OMGEA 真菌 DNA 提取试剂盒的方法提取样品中微生物总 DNA,0.8% 琼脂糖凝胶电泳检测。将所得的 DNA 模板分装,并 于-20℃条件下保存。

1.2.2 真菌18SrDNA PCR扩增

以 1.2.1.2 中所得到的 DNA 为模板,采用 18S rDNA 真菌通用引物^[6]: F1427-GC: 5'-CGCCCGCCGC TGTGATGCCCTTAGATGTTCTGGG-3', R1616 : 5'-GGTGTGTACAAAGGGCAGGG-3'。扩增目的基因 片段大小约为 230 bp。第一次 PCR 扩增体系(50 µL): 2×Mix 25 µL、ddH2O 21 µL、模板 DNA 2 µL、上下游 引物(10 µM) 各 1 µL。第一次 PCR 反应程序: 94 ℃ 预变性 5 min, 先 10 个循环 (94 ℃变性 30 s, 退火温 度 69~60 ℃,每个循环降1 ℃,退火 30 s,72 ℃延 伸1 min),再于恒定退火温度 59 ℃下进行 18 个循 环(94 ℃变性30 s, 59 ℃退火30 s, 72 ℃延伸1 min), 最后 72 ℃延伸 10 min。第二次扩增体系(50 µL): 以第一次 PCR 产物稀释 10 倍后作为模板, DNA 模板 1 µL、2×Mix 25 µL、dd H2O 22 µL、上下游引物(10 µM) 各1 µL。二次 PCR 的反应程序同第一次。所得 PCR 产物经琼脂糖凝胶电泳检测,检测条件为:1.2%琼脂 糖、100 V、30 min,并用 Bio-Rad 凝胶成像系统拍照。 1.2.3 细菌16S rDNA的V3区PCR扩增

 μL、ddH₂O 22 μL、上下游引物(10 μM) 各 1 μL。第 二次 PCR 的反应程序同第一次。所得 PCR 产物经琼 脂糖凝胶电泳检测,检测条件为:1.2%琼脂糖、100 V、 30 min,并用 Bio-Rad 凝胶成像系统拍照。

1.2.4 变性梯度凝胶电泳(DGGE)及条带测序 将第二次 PCR 扩增产物进行 DGGE 分离,电泳
条件为:变性剂梯度 40%~50%,丙烯酰胺浓度 8% (m/V),在 60 ℃,200 V 条件下预电泳 30 min,真 菌以 60 ℃、100 V、14 h,细菌以 100 V、13 h 条件
电泳,经 GoldviewTM 染色 30 min,蒸馏水漂洗 5 min, 凝胶成像仪拍照观察。选取 DGGE 图谱特征性条带按 试剂盒步骤割胶回收。将回收纯化后的 DNA 片段按
1.2.2、1.2.3 PCR 方法重扩增,PCR 扩增产物送大连 宝生物公司进行 T 克隆后测序。

1.2.5 数据与图像处理

DGGE 指纹图谱通过NTSYS2软件进行相似性聚 类分析,测得的序列在GenBank数据库用BLAST程序 进行同源性比对,并用Mega 5.0构建进化树,分析亲缘 关系及相似性。

图 1 四川麸醋发酵过程中真菌 18S rDNA 和细菌 16S rDNA 二次 PCR 扩增产物电泳图

Fig.1 Electrophoretograms of the PCR products (two amplifications) of fungal 18S rDNA (a) and bacterial 16S rDNA (b) throughout the Sichuan bran vinegar fermentation 注: a: 真菌, b: 细菌; 图中编号分别代表发酵相应时间 (d)所扩增出的DNA样品,M表示Marker。

2.1 真菌 18S rDNA 和细菌 16S rDNA PCR 扩

增结果

采用 1.2.1.2 中所述方法对醋醅样品进行 DNA 提取,真菌用引物 F1427-GC、R1616;细菌用引物 357F-GC、517R 进行二次 PCR 扩增,以不加模板 DNA 为空白对照,产物用 1.2%琼脂糖检测,结果如 图 1 所示。

由图 1 可知,真菌和细菌总 DNA 经扩增后均可获得位于 250 bp 以下 100 bp 以上约 230 bp 的预期 DNA 片段。经过两次 PCR 扩增后两者扩增产物条带 均清晰、明亮,达到 DGGE 分析要求。

图 2 四川麸醋发酵过程中真菌 DGGE 指纹图谱及条带识别示意 图

Fig.2 DGGE fingerprints and schematic diagram thereof for the identification of fungal species throughout the Sichuan bran vinegar fermentation

注:图中编号分别代表发酵相应时间(d)醋醅样品的DNA PCR 扩增产物。

2.2 四川麸醋发酵过程中菌群 PCR-DGGE 及

其优势菌种

2.2.1 真菌PCR-DGGE及其优势菌种

真菌 18S rDNA 扩增产物的 DGGE 分析结果如图 2 所示。由图可知,整个发酵过程中真菌种类多,优势菌明显,但是发酵过程中微生物菌群整体结构变化 不大。条带 C、F、H、K、L 存在于整个麸醋发酵过 程中,且随着发酵的进行丰度提高,为优势主带。条带 A、B、I 随着发酵的进行丰度逐渐减小,在发酵后 期优势性消失。条带 D、E、G 随着发酵的进行丰度 逐渐提高。其中条带 D 和 E 分别在发酵 15 d 和 18 d 左右丰度明显提高;条带 G 所代表的真菌在发酵 7 d 后成为优势菌种。

图 3 为四川麸醋发酵过程真菌 PCR-DGGE 指纹 图谱数据的聚类分析结果。发酵过程中真菌的群落变 化可分为:发酵初期(1 d),发酵前期(3~7 d),发酵 中期(9~18 d),发酵后期(21~27 d)、成熟期(30 d)。 发酵初期,由于添加的回糟、麸皮、小麦和大曲进行 拌料,微生物均处于相互适应阶段,其真菌群落结构 与发酵前中后期有明显差异。随厌氧发酵进行,发酵 前期真菌逐渐在适宜条件下繁殖,原料中的碳水化合 物被霉菌、酵母菌等大量转化利用,产生酒精,因此 该发酵阶段真菌图谱相似性较高。第9d进入发酵中 期,由于翻醅作用氧气进入醋醅,促进好氧微生物的 生长繁殖。发酵后期图谱中条带的数目及亮度均有明 显变化,其间整个醋醅酸度积累,翻醅作用减少了醋 醅中酸度过高而抑制大量真菌生长的现象,部分耐酸 或嗜酸性真菌生长良好。成熟期的醋醅中条带A、B、 D、J均消失,其真菌结构与其他时期相比差异明显。

图 3 四川 然間友醉过程甲 具圈 DGGE 指纹图信乘尖分析 Fig.3 Cluster analysis of fungal DGGE fingerprints throughout the Sichuan bran vinegar fermentation

将真菌优势条带克隆测序及序列比对后结果见表 1,建立优势条带序列与相似性序列进化树见图4。

Table 1 Sequence analysis results of fungal DGGE bands throughout the Sichuan bran vinegar fermentation					
条带	最大相似菌株	登录号	相似性		
А	酵母菌属 (Saccharomyces sp.)	AB526222	97%		
В	酿酒酵母菌(Saccharomyces cerevisiae strain)	KF447113	100%		
С	不可培养真菌(Uncultured Fungus)	GU178392	98%		
D	酵母菌属 (Saccharomyces sp.)	AB526222	96%		
E	拜耳接合酵母菌(Zygosaccharomyces bailii strain)	DQ189255	100%		
F	扣囊复膜孢酵母(Saccharomycopsis fibuligera strain)	EU057520	100%		
G	酿酒酵母菌(Saccharomyces cerevisiae strain)	HM009314	100%		
Н	伊萨酵母(Issatchenkia hanoiensis strain)	HQ669554	100%		
Ι	不可培养真菌(Uncultured Fungus)	GU178392	87%		
J	不可培养真菌(Uncultured Fungus)	GU178033	95%		
К	黑曲霉 (Aspergillus niger strain)	HM590646	100%		
L	草青霉菌(<i>Penicillium oxalicum</i> strain)	KF152942	99%		

表1	四川麸醋发酵过程中真菌DGGE条带序列分析结果	ļ

由表 1 和图 4 知,优势序列经 Genbank 数据库比
对得到 12 株菌相似菌株,显示四川麸醋涉及酵母菌
属、霉菌属和不可培养真菌。与条带 C、F、H、I、K、
L 同源性最高的菌株分别为不可培养真菌 (Uncultured
Fungus)、覆膜孢酵母(Sac. fibuligera)、伊萨酵母(Iss.
<i>hanoiensis</i> strain)、不可培养真菌(Uncultured Fungus)、
黑曲霉 (Asp. niger strain) 和草酸青霉 (Pen. Oxalicum

strain)。结合 DGGE 指纹图谱可知,四川麸醋发酵过 程中酵母菌种类占真菌种类的 58%,而霉菌仅占 16%。 黑曲霉主要作用于发酵前期将淀粉转化为还原糖供酵 母利用,其对发酵醋醅的糖化力有一定影响,有文献 ^[8]显示,四川麸醋在发酵过程中淀粉利用率偏低,发 酵结束后仍有 5%左右的淀粉剩余,可能与起糖化作 用的霉菌优势不明显有关。酿酒酵母主要产生酒精,

伊萨酵母具有较高的产酒精和产乙酸乙酯的能力 [9~10],发酵前期利用还原糖产酒精供醋酸菌转化,而 后期大量合成麸醋中主要呈香酯类乙酸乙酯,对麸醋 发酵过程中风味的形成具有重要的作用。扣囊复膜孢 酵母在同池发酵过程中优势明显,是已知酵母菌中转 化淀粉能力最强的,可以分泌淀粉酶、蛋白酶及 B-葡 萄糖苷酶,同时能积累具有保护大分子结构性能的海 藻糖^[11],增强微生物的抗逆性。条带L为草酸青霉, 由于四川麸醋采用生料开放式发酵,原料未灭菌处理 且回糟的使用量高,使得污染菌种进入发酵过程循环。 镇江香醋发酵过程 DGGE 图谱仅有 4 条明显条带, 且 均为酵母菌,浙江玫瑰醋的真菌条带数也较少,且进 入发酵后期真菌数量逐渐减少甚至消失,而由四川麸 醋发酵过程中 DGGE 指纹图谱知酵母菌随着供氧量、 醅温、微生物之间的相互作用呈现整体持续存在而不 同种类交替存在的现象,霉菌则始终存在于发酵体系 中,这与其特有的使用生料,添加回糟的开放式发酵 模式有关。

Fig.4 Phylogenetic tree of the fungi detected throughout the Sichuan bran vinegar fermentation

2.2.2 细菌PCR-DGGE及其优势菌种

细菌 16S rDNA 扩增产物的 DGGE 图谱如图 5 所示。四川麸醋发酵过程中细菌种类丰富,整体呈现由少变多,再由多变少的趋势,图中可以分辨出 16 条明显的优势菌条带。其中条带 1、2、3、5、13、14、15、16 的丰度明显大于其他条带,且贯穿整个发酵过程,优势显著。条带 4、6、7、10、11、12 随着发酵进行 丰度逐渐减小甚至消失。条带 8 和 9 从第 3 d 起明显 变亮成为优势条带,但随发酵过程丰度递减,在 24 d 以后优势消失。

图 5 四川麸醋发酵过程中细菌 DGGE 指纹图谱及条带识别示意

冬

Fig.5 DGGE fingerprints and schematic diagram thereof for the identification of bacteria throughout the Sichuan bran vinegar fermentation

注:图中编号分别代表发酵相应时间(d)醋醅样品细菌 DNA的PCR扩增产物样品。

图 6 四川麸醋发酵过程中细菌 16S rDNA PCR-DGGE 指纹图谱聚 类分析

Fig.6 Cluster analysis of bacterial PCR-DGGE fingerprints

throughout the Sichuan bran vinegar fermentation 图 6 是四川麸醋发酵过程细菌 PCR-DGGE 指纹

Modern Food Science and Technology

图谱数据做聚类分析结果。麸醋发酵过程中细菌群落 结构变化大致可以分为4个时期:发酵初期(1 d)、 发酵前期(3~9 d)、发酵中、后期(12~27 d)、发酵 成熟期(30 d)。醋醅中细菌各时期内的相似性较真菌 高,发酵初期微生物适应环境;发酵前期主要为厌氧 发酵,醋醅中的细菌利用原料以及真菌发酵产物进行 繁殖,此时细菌图谱相似性较高。进入发酵中后期, 由图 5 知 8、9 和 10 条带亮度明显降低,应为醅酸酸 度提升,抑制其所代表菌株的生长繁殖所致。成熟期 的醋醅中条带亮度明显降低,且多条带消失,其细菌 结构与其他时期相比差异明显。

对 PCR-DGGE 细菌优势条带克隆测序及序列比对 后结果如表 2 所示。优势条带序列与相似性序列进化 树见图 7。

表 2 四川麸醋发酵过程中细菌 DGGE 条带序列分析结果

Table 2	Sequence analysis	s results of bacterial PC	R-DGGE b	ands throughout (the Sichuan bran	vinegar fe	rmentatior

条带	最大相似菌株	登录号	相似性/%
1	嗜酸乳杆菌(Lactobacillus acidophilus strain)	KF548315	100
2	葡糖醋杆菌(Gluconacetobacter oboediens strain)	KF164316	100
3	不可培养细菌(Uncultured bacterium)	KC961597	99
4	融合魏斯氏菌(Weissella confusa strain)	KC608755	100
5	不可培养乳酸杆菌属(Uncultured Lactobacillus sp.)	KF444933	98
6	不可培养芽孢杆菌属(Uncultured Bacillus sp.)	KF278126	97
7	不可培养细菌(Uncultured bacterium)	KC961595	98
8	不可培养乳酸杆菌属(Uncultured Lactobacillus sp.)	KF502753	99
9	不可培养乳酸杆菌属(Uncultured Lactobacillus sp.)	JQ962561	100
10	戊糖片球菌 (Pediococcus pentosaceus strain)	JX477168	100
11	不可培养醋酸杆菌属(Uncultured Acetobacter sp.)	JN420669	98
12	类肠膜魏斯氏菌(Weissella paramesenteroides strain)	JQ446522	100
13	葡糖杆菌属 (Gluconobacter sp.)	KF436692	100
14	巴氏醋杆菌 (Acetobacter pasteurianus strain)	KF010515	97
15	不可培养细菌(Uncultured bacterium)	HM557046	99
16	甲醇酸单胞菌(Acidomonas methanolica)	FJ481927	100

由表2和图7可知: 四川麸醋发酵过程中共存在 优势或者特异性菌株有 16 株, 它们与数据库 16Sr DNA 序列的相似性在 97%~100%之间,分为可培养和 不可培养2类,其中8条为不可培养序列,占细菌种 类的 50%, 说明麸醋发酵经过复杂环境的长期驯化, 形成特殊菌系,其中的不可培养微生物可能对四川麸 醋呈味的独特性存在影响。此16种细菌隶属乳酸杆菌 属、乳酸球菌属、魏斯氏菌属、不可培养细菌属、醋 杆菌属、芽孢杆菌属、甲醇酸单胞菌属6个属。优势 主带1、2、3、5、13、14、15、16的测序结果表明其 所代表菌株分别为嗜酸乳酸杆菌(Lactobacillus acidophilus strain)、葡糖醋杆菌 (Gluconacetobacter oboediens strain)、不可培养细菌 (Uncultured bacterium)、不可培养乳杆菌(Uncultured Lactobacillus sp.)、葡糖杆菌属(Gluconobacter sp.)、巴氏醋杆菌 (Acetobacter pasteurianus strain)、不可培养细菌 (Uncultured bacterium)和甲醇酸单胞菌(Acidomonas

methanolica)。可见四川麸醋发酵过程中的主要优势细菌为乳酸菌和醋酸菌。发酵初期醋醅中检出融合魏斯

氏菌和类肠膜魏斯氏菌,据相关文献^[12-14]报道,融合 魏斯氏菌能发酵精氨酸产生风味物质,类肠膜魏斯氏 菌在食醋发酵初期起启动发酵的作用,并且能通过苹 果酸-乳酸发酵途径产生呈味乳酸^[15]。条带 16 为甲醇 酸单胞菌,其能利用甲醇、乙醇产甲酸、乙酸,同时 可氧化葡萄糖产酸,提高食醋发酵过程中的产酸率, 但甲醇酸单胞菌具有将乙醇氧化为二氧化碳和水的能 力,在发酵后期应注意控制醅温以减少过氧化作用。 从细菌 DGGE 图谱及条带的克隆测序结果还可发现 麸醋优势菌中乳酸菌种类要多于醋酸菌,因此四川麸 醋中乳酸的含量较高,导致麸醋的口感有一定涩味。

由真菌及细菌图谱知四川麸醋生料开放式同池发 酵过程使参与生化反应的微生物轮流活动,优势菌株 始终处于活跃状态,群落变化不明显,与许伟^[5]对镇 江香醋、朱扬琳^[6]对浙江玫瑰醋的研究的结果存在较 大差异。克隆测序结果显示不可培养微生物在四川麸 醋醋醅中含量丰富,对麸醋特有品质可能存在影响。

3 结论

本实验通过 PCR-DGGE 技术对四川麸醋中真菌 及细菌的多样性进行了分析,结果表明四川麸醋发酵 过程中微生物种类丰富、优势菌明显,但微生物群落 整体变化趋势不明显。主要真菌有酿酒酵母(Sac. cerevisiae strain)、扣囊复膜孢酵母(Sac. fibuligera)、伊 萨酵母(Iss. hanoiensis strain)、不可培养真菌 (Uncultured Fungus)、黑曲霉 (Asp. niger strain); 主 要细菌有嗜酸乳杆菌(Lac. acidophilus strain)、葡糖 醋杆菌 (Glu. oboediens strain)、巴氏醋杆菌 (Ace. pasteurianus strain)和甲醇酸单胞菌(Aci. methanolica)、不可培养细菌(Uncultured bacterium)、 不可培养芽孢杆菌(Uncultured Bacillus sp.)、不可培 养乳杆菌(Uncultured Lactobacillus sp.)。同时检测出3 条不可培养真菌条带及8条不可培养细菌条带。本实 验为后续四川麸醋酿造中的特有微生物分离、风味物 质特征及传统工艺的管理与改进方法的深入研究提供 了理论基础。

参考文献

- [1] 聂志强,韩玥,郑宇,等.宏基因组学技术分析传统食醋酿造 过程微生物多样性[J].食品科学,2013,34(15):198-203
 NIE Zhi-qiang, HAN Yue, ZHENG Yu, et al. Metagenomic analysis of microbial diversity in the traditional vinegar fermentation process [J]. Food Science, 2013, 34(15): 198-203
- [2] Wang H Y, Gao Y B, Fan Q W, et al. Characterization and

comparison of microbial community of different typical Chinese liquor Daqus by PCR-DGGE [J]. Letters in Applied Microbiology, 2011, 53(2): 134-140

- [3] 张奶英,刘书亮,罗松明,等.叶用芥菜盐渍过程中微生物群 落分析[J].食品工业科技,2014,13(35):147-151
 ZHANG Nai-ying, LIU Shu-liang, LUO Song-ming, et al. Study on microbial community of salted leaf mustard (*Brassica juncea*) during their saline fermentation process [J].
 Science and Technology of Food Industry, 2014, 13(35): 147-151
- [4] 林晓珊,阮征,刘飞,等.PCR-DGGE 技术对中华开菲尔微生物菌群的分析[J].现代食品科技,2013,29(6):1217-1221
 LIN Xiao-shan, RUAN Zheng, LIU Fei, et al. Analysis of microbial community structures in kefir grains by PCR-DGGE techniques [J]. Modern Food Science and Technology, 2013, 29(6): 1217-1221
- [5] 许伟.镇江香醋发酵过程中微生物群落及其功能分析[D]. 无锡:江南大学,2011

XU Wei. Analysis of the microbial diversity and function during acetic acid fermentation process of Zhenjiang Aromatic Vinegar [D]. Wuxi: Jiangnan University, 2011

[6] 朱扬玲.采用 PCR-DGGE 方法研究浙江玫瑰醋酿造过程中的微生物多样性[D].杭州:浙江工商大学,2009

ZHU Yang-ling. Analysis of microbial diversity in Zhejiang rosy rice vinegar by PCR-DGGE [D]. Hangzhou: Zhejiang Gongshang University, 2009

- [7] Carlos V, Estibaliz M, Ángel G, et al. Population dynamics of acetic acid bacteria during traditional wine vinegar production [J]. International Journal of Food Microbiology, 2010, 138(1): 130-136
- [8] 张奶英,刘书亮,杨勇,等.四川麸醋发酵过程中理化指标与 微生物菌相的动态分析[J].食品工业科技,2014,35(11): 174-178
- [9] ZHANG Nai-ying, LIU Shu-liang, YANG Yong, et al. Dynamic analysis of physiochemical indexes and microbesin fermentation process of Sichuan bran vinegar [J]. Science and Technology of Food Tndustry, 2014, 35(11): 174-178
- [10] 刘婷婷,曾驰,杨团元,等.白云边酒优势酵母菌的分离鉴定 及其发酵特性分析[J].中国酿造,2013,32(12):116-120 LIU Ting-ting, ZENG Chi, YANG Tuan-yuan, et al. Isolation and identification of the dominant yeast from fermented grains of Baiyunbian liquor and the analysis of fermentation characteristics [J]. China Brewing, 2013, 32(12): 116-120
- [11] Gallardo J C M, Souza C S, Cicarelli R M B, et al. Enrichmentof a continuous culture of Saccharomyces

cerevisiae with the yeast *Issatchenkia orientalis* in the production of ethanol at increasing temperatures [J]. Journal of Industrial Microbiology and Biotechnology, 2011, 38(3): 405-414

- [12] Chen L, Chi Z M, Chi Z, et al. Amylase production by Saccharomycopsis fibuligera A11 in solid-state fermentation for hydrolysis of cassava starch [J]. Applied Biochemistry and Biotechnology, 2010, 162(1): 252-263
- [13] Olan O A, Chua J, Schroeder S, et al. Weissella confusa (basonym: Lactobacillus confusa) bacteremia: a case report
 [J]. Journal of Clinical Microbiology, 2001, 39(4): 1604-1607

- [14] Flaherty J D, Levett P N, Dewhirst F E, et al. Fatal case of endocarditis due to *Weissella confusa* [J]. Journal of Clinical Microbiology, 2003, 41(5): 2237-2239
- [15] Bjorkroth K J, Schillinger U, Geisen R, et al. Taxonomic study of *Weissella confusa* and description of *Weissella* sp. nov, detected in food and clinical samples [J]. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(1): 141-148
- [16] Morales M L, Gonzalea A G, Troncoso A M. Ion-exclusion chromatographic determination of organic acids in vinegars
 [J]. Journal of Chromatography A, 1998, 822(1): 45-51