大豆伴球蛋白自组装纤维的乳化性质

朱连昌, 唐传核

(华南理工大学轻工与食品学院,广东广州 510640)

摘要:大豆伴球蛋白(7S)在远离等电点热处理,会自组装成淀粉样蛋白纤维。本研究旨在开发 7S 自组装纤维在水包油乳液中的 应用潜力。研究采用 7S 在 pH 2.0 条件下 85 ℃热处理 3 h, 通过动态光散射(DLS)、硫磺素 T 荧光(Th T 荧光)和原子力显微镜(AFM) 观察,表明制备短棒状蛋白自组装纤维。利用未热处理的 7S 与热处理得蛋白纤维为稳定剂,研究了蛋白浓度(c)和油相比例(*ø*)对乳化 活性和储藏稳定性的影响。实验表明, c≥2.0%,蛋白纤维的乳化活性显著高于未热处理的 7S;这可能因为蛋白纤维的线性结构具有 更好的构象柔顺性,能高效的吸附在油水界面。c=6.0%, d₄₃ 在 *φ*=0.2~0.6 范围不受 *φ* 的影响。c≥4.0%,蛋白纤维的乳化稳定性显 著优于未热处理的 7S,且相对低聚合率(CI)及脂肪上浮率(CI%),使蛋白纤维表现出皮克林稳定剂的性质。这一发现为皮克林颗粒的 制备提供了一种新的方式。

关键词: 大豆 7S; 纤维聚集; 皮克林乳液; 乳化性质 文章篇号: 1673-9078(2016)3-56-61

DOI: 10.13982/j.mfst.1673-9078.2016.3.010

Emulsifying Properties of Self-assembled Fibrillar Aggregates of Soy

β-Conglycinin

ZHU Lian-chang, TANG Chuan-he

(College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China) **Abstract:** Soy β -conglycinin (7S) can self-assemble into any loid-like fibrils with heat treatment, at a pH distant from the isoelectric point. The aim of this study was to investigate the potential application of 7S self-assembled fibrils in oil-in-water emulsions. 7S was heated at 85 °C for three hours (pH 2.0). The product was analyzed by dynamic light scattering (DLS), thioflavin T (Th T) fluorescence assay, and atomic force microscopy (AFM). The results indicated that short, rod-shaped, self-assembled fibrils were successfully prepared. The influence of protein concentration (*c*) and oil fraction (ϕ) on the emulsifying activity and storage stability were studied using unheated 7S as well as 7S fibrils obtained from heat treatment as stabilizers. The results showed that at $c \ge 2\%$, the emulsifying activity of 7S-fibril was significantly higher than that of unheated 7S, which is probably since the linear fibrillar structure exhibits higher conformational flexibility and 7S-fibril can be effectively adsorbed onto the oil-water interface. At c = 6%, the droplet size ($d_{4,3}$) was not affected by the ϕ value within the range of 0.2 to 0.6. At $c \ge 4.0\%$, 7S-fibril showed much higher emulsifying stability than unheated 7S along with relatively low coalescence index (CI) and creaming index (*CI*%) as compared to unheated 7S. Thus, 7S-fibril exhibited the properties of Pickering stabilizer. The results of this study indicate a new approach for the preparation of Pickering-like stabilizer.

Key words: soy β -congly cinin; fibrillar aggregation; pickering emulsion; emulsifying property;

蛋白和多肽的两亲性分子结构,决定了其具有良好的乳化性和起泡性。蛋白分子能定向吸附和有序排列在两相界面,减小表面张力^[1]。因此,大豆蛋白作为乳化剂广泛应用于食品的乳化和起泡体系。乳化性包括乳化活性和乳化稳定性两个方面。影响蛋白的乳收稿日期:2015-05-28

基金项目: 国家自然科学基金资助项目(31171632)

作者简介:朱连昌(1990-),男,硕士研究生,研究方向:植物蛋白研究与 应用

通讯作者:唐传核(1973-),男,博士,教授,研究方向:植物蛋白研究与 应用 化活性和乳化稳定性的因素很多,如蛋白浓度、pH、 离子强度和蛋白分子构象的柔顺性等^[2]。

近年来自助装纤维引起食品工作者的广泛关注。 自组装(self-assembly)指构筑单元通过相互作用(如 疏水相互作用,氢键,静电斥力,范德华力等)自发 形成有序的高级结构的过程。根据 Tang^[3]报道,蛋白 自组装纤维化聚集可认为分三步:(1)蛋白在远离等 电点条件下,加热变性,构象发生变化;(2)蛋白在 进一步加热时发生水解,形成基本的构建单元,开始 聚集形成晶核;(3)纤维化反应继续,形成更长的蛋 白纤维。蛋白的自组装一般可以形成宽度~4 nm,长 度 0.1~2 µm, 甚至更长的线性淀粉样纤维聚集体。

近年来,利用食品级纳米颗粒或聚集体制备皮克 林乳液的研究越来收到科研工作者的关注。Liu^[4]通过 95 ℃热处理15 min,再加 300 mM NaCl制备了 SPI 纳米颗粒,由该颗粒稳定的乳液显示了良好的储存稳 定性。蛋白自组装纤维也是纳米尺度的食品级颗粒, 而当前蛋白纤维自组装的研究应用,主要集中在食品 添加剂(增稠剂,胶凝剂)方向,以及制备食品蛋白 纤维型凝胶^[5],关于蛋白自组装纤维作为乳化剂,研 究蛋白纤维聚集体的乳化性质的报道并未发现。

本研究以 7S 球蛋白为研究对象,首先在 pH 2.0 下 85 ℃加热,通过纤维化反应制备蛋白纤维聚集体; 然后通过改变蛋白浓度和油相比例,经高速剪切制备 乳液,研究热处理和未经热处理的样品的乳化活性及 乳化稳定性差异,进一步拓展蛋白自组装纤维的应用 研究。

1 材料与方法

1.1 实验材料与仪器

低温脱脂大豆粕购于山东禹王公司; 食品级大豆 油,市售; ThT 购于美国 Sigma-Aldrich 公司; 其他 化学试剂均为分析纯。

Malvern Zetasizer Nano ZS 粒度仪, Malvern Mastersizer 3000, 英国 Malvern 公司; 荧光分光光谱 仪, 日本 HITACHI 公司; 原子力显微镜, 美国 Veeco 公司; T25 高速分散机, 德国 IKA; 光学显微镜, 中 国 Fhenix 公司。

1.2 实验方法

1.2.1 大豆 7S 球蛋白的制备

本文采用 Nagano 方法^[6]从低温豆粕中得到大豆 7S 球蛋白,根据 Tang 的报道^[7],该方法制的得 7S 球 蛋白的纯度约为 75%,凯氏定氮测得样品总蛋白含量 89.75 ±1.13%。

1.2.2 7S 球蛋白的热处理

大豆 7S 球蛋白溶于蒸馏水,均匀搅拌 2 h (2M HCl 维持溶液 pH=2.0),水化过夜,10000 r/min×20 min 得的 6.0% (*m/V*)蛋白溶液。蛋白溶液使用前需 过膜 0.22 µm,过膜后的溶液,分装在不同玻璃瓶中 密封,一个置于 85 ℃水浴锅中加热 3 h。加热完毕, 立即取出并用冰浴冷却,进行下列实验。

1.2.3 ThT 荧光分析

将 8 mg Th T 溶于 10 mL 磷酸缓冲溶液(10 mM, pH 7.0, 150 mM NaCl)中制得 Th T 浓缩液,充分溶解

后过膜 0.22 μm。Th T 储液用 4 ℃的冰箱密封避光保 存,保存期不超过一周。实验前,用上述磷酸缓冲液 将浓缩液稀释 50 倍,制得工作液。将 30 μL 待测样 品与 5 mL Th T 工作液混合,震荡混匀后静置 2 min 后 进行测量。设定仪器的激发波长为 460 nm,发射波长 490 nm,狭缝间隙 5 nm,扫描范围为 470~600 nm。

1.2.4 动态光散射 (DLS)

动态光散射测量是在 Malvern Zetasizer Nano ZS 仪器上进行的。用过 0.22 µm 超滤膜的 pH=2.0 的蒸馏 水把待测样品稀释至 0.1% (*m*/V),取 1.3 mL 稀释液 加入到比色皿中,室温 25 ℃条件下测量。

1.2.5 原子力显微镜 (AFM) 观察

将待测样品,用过 0.22 μm 超滤膜的 pH 2.0 的蒸 馏水稀释至 2 μg/mL,取 2 μL 样品分散在干净的云母 片上,室温下风干后移至原子力显微镜观察。显微镜 采用轻敲模式 (Tapping Mode)成像,扫描探针为商 用氮化硅针尖,微悬臂常数 180 μm,力常数为 3.2 N/m。所有图像只经过自动平滑处理,以消除扫描方 向上的低频噪音。

1.2.6 乳液的制备

浓度为 6%的未热处理和热处理的蛋白溶液,用 过 0.22 µm 超滤膜的 pH 2.0 的蒸馏水稀释至 0.5%~6.0% (mN),加 0.01 %叠氮钠作防腐剂。乳液 的制备参考 Folter 方法^[8],T25 高速分散机 10000 r/min,同时缓慢加入油相至 ϕ =0.2~0.6,加完后继续 均质 2 min。最终,每个乳液样品体积为 20 mL。

1.2.7 乳液粒度分布 (d4.3)

乳液粒度分布在 Mastersizer 3000 仪器上进行,测 定新制乳液和乳液储存 7 d 后的粒度分布。参数设置: 大豆油滴折射率 1.456,分散剂折射率 1.330。pH 2.0 的水和 1% Tween-80 溶液为分散介质。

絮凝指数 (FI) 定义为: FI=[(d_{4,3-water}) / (d_{4,3-Tween}) -1.0]×100 (2)

结合指数 (CI) 定义为: CI=[(d₄₃-Tween,7d⁻d_{4,3}-Tween,0 d)/(d₄₃-Tween,0d)]×100 (3)

1.2.8 脂肪上浮率 (CI%)

取 10 ml 新制备的乳液置于玻璃管(直径 1.5 cm, 高度 12 cm)中,于室温下贮藏。同时记录不同时间 的清液层高度(H_s,下层)和总高度(H_c)。

脂肪上浮率 (CI%) 定义为: Creaming Index (%) = (H_s/H_t)×100% (4)

1.2.9 乳液界面蛋白含量

取新制的乳液 1 mL 在 13000 r/min 离心 45 min, 用一次性注射器取出下层清液。取 100 μ L 清液用水稀 释至 1 mL, 然后 Bradford 法⁹¹测蛋白含量 (C_f)。 蛋白吸附率 AP(%)=(C₀-C_f)×100/C₀ (5)
界面蛋白浓度 Γ(mg/m²)= (C₀-C_f)×d_{3,2}/6φ (6)
注: C₀为乳液中总蛋白含量; φ为油相比例,本文中 φ=0.6;
d_{3,2}为乳液表面平均半径。

1.2.10 统计分析

所有数据平行测定三次的平均值,作图用 Origin Pro 8.0 软件。

2 结果与讨论

2.1 动态光散射 (DLS)

光在非均一介质中传播时,一部分被吸收,一 部分被散射。蛋白溶液中,分子做布朗运动,散射光 能量频率变化,利用这一原理,DLS 可检测蛋白溶液 中的微小聚集体,散射的光强与聚集体的出现同步。 图 1a 显示,85 ℃热处理 3 h 的粒径体积分布较未热处 理的样品显著增大,说明 7S 球蛋白在 85 ℃热处理过 程中发生聚集,形成大量粒径 100 nm 左右的蛋白聚 集体。图 1b 显示,85 ℃处理 0 h 较 3 h 的蛋白样品, 颗粒的平均粒径(z-Average)也从 71.59±0.47 nm 增 大到 115.7±0.65 nm,证明热处理促使蛋白聚集,形成 粒径更大的聚集体。

球蛋白自组装纤维化显著特点之一是形成具有 很多β-折叠结构的淀粉样纤维^[10]。硫磺素T(ThT) 是一种阳离子的苯并噻唑染料,与β-折叠结构结合后 荧光强度显著增强。图 2b显示,在热处理初期(0~30 min),最大荧光强度从1182±3.4到6654±71,至1h以 后保持平稳,表明7S在热处理0~1h阶段,β-折叠结 构数量显著增加,大量形成自组装的结构单元,随着 加热时间的延长(1~3h),纤维化反应继续,结构单 元自组装成有序的淀粉样纤维。

原子力显微镜 (AFM) 原理是根据样品表面和一 个微型力敏原件之间的原子间相互作用力大小,来反 映样品的形貌学特征。图 2a 的原子力显微镜照片显 示,85℃热处理 3 h,7S 自组装形成大量长度约为 100 nm,高度约为 1.5 nm 的短棒状纤维。图 2a 中还出现 了几个高度约为 3 nm 的团装结构,这可能是两条纤 维在垂直方向上发生重叠,经过探针扫描,表现为纤 维团状结构。

Fig.2 Panel a: AFM images of preheated and unheated 7S samples. Panel b: Changes in the Th T maximum fluorescence spectroscopic profiles of 7S sample during heating processing

Modern Food Science and Technology

图 3 蛋白浓度(0.5~6.0%)的未热处理 7S(a)和 7S-纤维(b) 乳液的粒度分布,(c)油滴平均粒径(d₃)随蛋白浓度的变化 Fig.3 Typical droplet size distribution profiles of fresh

emulsions stabilized by unheated 7S (a) and preheated 7S (b) at c of 0.5% to 6.0%. c: c dependence of average droplet size d_{4,3} 注: 显微镜照片标尺长度为 100 µm。

考察蛋白浓度对乳化活性的影响,将 c=6.0%的热处理和未热处理的 7S 蛋白溶液,pH 2.0 的水稀释至 0.5~6.0% (m/V),油相 ϕ =0.4;乳液粒度测量分散剂为 1% Tween-80 溶液。图 3A 为未热处理 7S 为稳定剂的乳液样品,总体来看,乳液粒径的体积分布随蛋白浓度增大(0.5~6.0%)而减小,平均粒径从 38.3±0.31 μ m 减小到 22.4±4.43 μ m,但减小的趋势并不显著。图 3B 为热处理 3 h 制得的蛋白纤维为稳定剂的乳液样品,蛋白浓度 0.5~4.0%,乳液粒度也主要集中在 10~100 μ m,而 c =6.0%时出现双峰,说明乳液存在部分粒径在 1 μ m 左右的油滴,平均粒径从 31.8±0.22 μ m

减小到 7.4±2.08 μm。Tang^[11]研究发现蛋白吸附到油水 界面后,一般会发生结构重排,从而影响蛋白的乳化 性质,因此结构柔顺性是影响蛋白的重要因素。蛋白 纤维在高浓度时,乳化活性显著提高,可能是因为蛋 白纤维的线性结构柔顺性更好,能够更高效的吸附来 稳定油水界面。

2.3.2 油相比例 (ø) 对乳化活性的影响

除了蛋白浓度, ϕ 也会显著影响乳液平均粒径 $(d_{43})^{[4]}$ 。本文研究了蛋白浓度为0.5%、2.0%、6.0% 时, d_{43} 随 ϕ 的变化趋势。研究发现, 每组样品的 d_{43} 都随着蛋白浓度的增加而下降,这也证明了2.3.1中的 结论。图 3a 显示蛋白浓度为0.5%, ϕ 从0.2~0.6, d_{43} 从 27.1±3.37 µm 增加到48.6±2.08 µm; 而 c = 6.0%, d_{43} 随 ϕ 的变化而无显著变化,这一现象也可以从乳液 的显微镜照片直观得到。其原因可能为: c = 0.5 %时, 蛋白颗粒数量不足以覆盖油水界面, 油水界面界面张 力较大, 油滴合并使粒径变大, 表现为 d_{43} 随 ϕ 增大 而增大; 而c = 6.0%时蛋白颗粒足以稳定油水界面, 油滴处于稳定状态, d_{43} 随 ϕ 变化并不显著。

Modern Food Science and Technology

2016, Vol.32, No.3

图 4 未热处理 7S (a, c) 和 7S-纤维(b, d) 稳定的乳液平均粒 径 $(d_{4,3})$ 随 c 和 ϕ 的变化及微观结构图; 显微镜照片标尺为 100 µm

Fig.4 Changes in the average droplet size $(d_{4,3})$ of fresh emulsions stabilized by unheated 7S (a, c) and 7S-fibril (b, d) 7S at varying c or ϕ values and corresponding microstructure images. The scale bar in the microscope image indicates 100 µm

2.4 乳化稳定性

2.4.1 蛋白浓度对乳化稳定性的影响

乳液是热力学不稳定体系,油水两相会向自由能

最小的状态移动[12]。油滴间的絮凝和聚合是破坏乳液 稳定体系的主要方式。针对油滴的絮凝和结合,在 ϕ =0.6研究蛋白浓度对乳化稳定性的影响。研究发现, 蛋白纤维稳定的乳液样品,随着蛋白浓度的增加 (0.5~6.0%), FI 显著增加(61.36~361.23), 其原因 可能为吸附到油水界面的蛋白纤维之间相互作用,促 进了油滴絮凝。乳液室温储藏7d后,由蛋白纤维稳 定的乳液样品 FI 显著高于未热处理 7S 稳定的乳液样 品,而CI值显著低于未热处理7S稳定的乳液样品, 尤其 *c* = 6.0% (FI: 932.03>383.44, CI: 10.14<40.37), 这一现象与 Liang^[13]报道的 PPI 做皮克林稳定剂一致。 说明, c=6.0%, 蛋白纤维表现出皮克林颗粒的性质。

蛋白吸附率(AP%)随着蛋白浓度增加而增加, 界面蛋白浓度也表现出相同的趋势。但热处理制得的 蛋白纤维为稳定剂的乳液样品中,蛋白浓度 2.0~ 6.0%,界面蛋白浓度从 10.45 mg/m² 降到 4.45 mg/m², 造成这一现象的原因为, c =6.0%表面平均粒径 d3.2 =3.05 µm, 远小于 c = 2.0% 的 d₃₂ = 23.4 µm, 因此具有 更大的比表面积。

表 1 蛋白浓度(0.5~6.0 %) 对新制和储存 7 d 的乳液平均粒径(d3)、FI、CI和界面蛋白浓度的影响

Table 1 Effect of c values (0.5% to 6.0% [m/V]) on the average droplet size (d43), flocculation and coalescence indices (FI and CI), and protein concentration at the interface of fresh emulsion (0 d) and the emulsion stored for seven days

			$d_{4,3}$	ım		F	F I		Interfacial p	rotein adsorption
	с%	0 d		7 d		b d	7.4	74	A D0/	$\Gamma/(mg/m^2)$
		2.0-water	1%Tween	2.0-water	1%Tween	0 u	7 u	7 u	AF %	1/(mg/m)
Unheated 7S	0.5	63.2±7.01	48.6±2.08	411.7±51.35	191.4±10.40	30.14	114.93	293.83	71.61	4.23
	2	70.8±5.66	29.7±1.70	168.3±17.13	61.4±5.43	138.42	174.13	106.91	84.37	11.05
	6	98.4±27.31	17.4±1.13	117.8±21.28	24.4±7.25	465.55	383.44	40.37	90.23	17.16
Fibrils	0.5	95.7±5.53	59.3±1.76	327.1±4.91	124.7±8.31	61.36	162.31	110.29	73.28	3.78
	2	71.1±9.85	31.7±2.08	209.3±34.35	46.4±4.31	124.33	351.09	46.37	80.35	10.45
	6	63.6±13.47	13.8±1.55	156.9±6.29	15.2±1.03	361.23	932.03	10.14	87.52	4.45

2.4.2 脂肪上浮率(CI%)

乳液油滴间絮凝和结合,会形成更大的油滴聚集 体,由于油与水密度差异,所以迅速出现分层,形成 脂肪上浮现象。图 5 给出了蛋白纤维和未热处理 7S (*c*=0.5~6.0%)在 *o*=0.4 的脂肪上浮情况。图 5A 显 示, 未热处理 7S (c =0.5~6.0%) 稳定乳液储存一段时 间都出现不同程度的脂肪上浮,并在第3天均达到最 大值,脂肪上浮率也随蛋白浓度的增加而降低,但结 果并不显著。下层水相清澈,与油相有明显的分界面。 而图 5b 显示, c<2.0%时,呈现和图 5a 相同情况;相 反 c≥4.0% 时,乳液在开始几天很稳定,甚至在第7天 才开始出现脂肪上浮的现象,且下层水相浑浊,分界 面不清晰,表现出良好的乳化稳定性。这一现象的原 因可能为,高浓度蛋白纤维稳定的乳液粘度较大,在 一定时间内阻碍脂肪上浮。可见,随着蛋白浓度的增 大,乳液的稳定性增强,蛋白纤维较未热处理 7S 表 现更好的乳化稳定性,与表1数据一致。

结论 3

本文研究了大豆 7S 球蛋白 (6%, m/V) 在 pH 2.0, 85 ℃热处理 3 h, 自组装形成大量长度约为 100 nm, 高度约为 1.5 nm 的短棒状纤维。以制得的蛋白纤维与 未热处理的 7S 为稳定剂,制备水包油乳液。研究通 过考察乳化活性和乳化稳定性,对比了蛋白纤维与未 热处理的7S的乳化性质。研究结果表明, c≥2.0%时, 蛋白纤维的乳化活性显著高于未热处理的 7S; 且在 c=6.0%时, d₄3 在 φ =0.2~0.6 范围不受油相比例的影 响。这可能因为蛋白纤维的线性结构柔顺性更好,能 高效的吸附在油水界面。在 c≤2.0%时,蛋白纤维和未 热处理的 7S 制备的乳化稳定性差异不大;但在 c≥4.0%,蛋白纤维的乳化稳定性显著优于未经热处理 的样品,且相对低结合率(CI)及脂肪上浮率(CI%), 使蛋白纤维在 c≥4.0%表现出皮克林稳定剂的性质。

Fig 5. Evolution of percentage of creaming index (CI%) for the emulsion stabilized by unheated 7S (a) & 7S-fibril (b) at a comparable *c* value of 0.5~6.0%. The Specific ϕ value of 0.4.

参考文献

- Foegeding E A, Davis J P. Food protein functionality: A comprehensive approach [J]. Food Hydrocolloids, 2011, 25(6):1853-1864.
- [2] Shen L, Tang C H. Role of conformational flexibility in the emulsifying properties of bovine serum albumin [J]. Journal of Agricultural and Food Chemistry. 2013, 61: 3097-3110
- [3] Liu J, Tang CH. Heat-induced fibril assembly of vicilin at pH 2.0: Reaction kinetics, influence of ionic strength and protein concentration, and molecular mechanism [J]. Food Research

International, 2013, 51: 621-632

- [4] Liu F, Tang C H. Soy protein nanoparticle aggregation as pickering stabilizers for oil-in-water emulsion [J]. Journal of Agricultural and Food Chemistry. 2013, 61: 8888-8898
- [5] Tang C H, Wang C S. Formation and characterization of amyloid-like fibrils from soy β-conglycinin and glycinin [J]. Journal of Agricultural and Food Chemistry, 2010, 58: 11058-11066
- [6] Nagano T, Hirotsuka M, Mori H, et al. Dynamic viscoelastic study on the gelation of 7S globulin from soybeans [J]. Journal of Agricultural and Food Chemistry, 1992, 40(6): 941-944
- [7] Luo L J, Liu F, Tang C H. The role of glycinin in the formation of gel-like soy protein-stabilized emulsions [J]. Food Hydrocolloids, 2013, 32: 97-105
- [8] de Folter J W, van Ruijven M W M, Velikov K P. Oil-in-water Pickering emulsions stabilized by colloidal particles from water- insoluble protein zein [J]. Soft Matter. 2012, 8: 6807-6815
- [9] M A Redmile-Gordon, E Armenise, R P White, et al. A comparison of two colorimetric assays, based upon Lowry and Bradford techniques, to estimate total protein in soil extracts [J]. Soil Biology and Biochemistry, 2013, 67: 166-173
- [10] Oboroceanu D, Wang L, Brodkorb A, et al. Characterization of β-lactoglobulin fibrillar assembly using atomic force microscopy. polyacrylamide gel electrophoresis, and in situ Fourier transform infrared spectroscopy [J]. Journal of Agricultural and food Chemistry, 2010, 58(6): 3667-3673
- [11] Tang C H, Shen L. Role of conformational flexibility in the emulsifying properties of bovine serum albumin [J]. Journal of Agricultural and Food Chemistry. 2013, 61: 3097-3110
- Tcholakova S, Denkov N D, Ivanov I B, et al. Coalescence stability of emulsions containing globular milk proteins [J]. Advances in Colloid and Interface Science, 2006: 123-126, 259-293
- [13] Liang H N, Tang C H. Pea protein exhibits a novel Pickering stabilization for oil-in-water emulsions at pH 3.0 [J]. Food Science and Technology, 2014: 1-7