近红外光谱法快速检测婴儿配方奶粉中的 脂肪酸含量

穆同娜¹, 庄胜利², 赵玉琪¹, 吴燕涛¹, 于晓瑾¹, 孙婷¹

(1.北京市海淀区产品质量监督检验所,北京 100094)(2.北京工业大学环境与能源工程学院,北京 100124) 摘要:采用傅里叶近红外光谱结合偏最小二乘法(PLS)法建立了测定婴儿配方奶粉中的总脂肪酸、饱和脂肪酸和不饱和脂肪 酸含量的近红外数学模型,并通过交互验证和外部检验两种方式考察了近红外数学模型的可靠性。通过选择不同的波长范围,采用平 滑、矢量归一化、一阶求导、二阶求导和散射校正对近红外光谱进行处理,总脂肪酸、饱和脂肪酸和不饱和脂肪酸的校正模型相关系 数(R²)分别为 0.9337、0.9374、0.9020, RPD 分别为 3.63、3.65、2.90。结果表明近红外数学模型具有良好的预测性能。采用建立 的模型对验证集中的 20 个婴儿配方奶粉样品进行预测,总脂肪酸含量、饱和脂肪酸和不饱和脂肪酸的预测值与化学测定值之间经配 对t 检验分析,与常规化学方法得到的检验结果无显著差异。

关键词:近红外光谱;婴儿配方奶粉;总脂肪酸;饱和脂肪酸;不饱和脂肪酸;测定 文章篇号:1673-9078(2015)4-277-281 DOI: 10.13982/j.mfst.1673-9078.2015.4.045

Rapid Determination of Total Fatty Acids, Saturated Fatty Acids, and

Unsaturated Fatty Acids in Infant Formula using Near-infrared

Spectroscopy

MU Tong-na¹, ZHUA NG Sheng-li², ZHAO Yu-qi¹, WU Yan-tao¹, YU Xiao-jin¹, SUN Ting¹

(1.Haidian District Institute of Products Quality Supervision and Inspection, Beijing 100094, China) (2.College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China)

Abstract: A near-infrared mathematical model for the detection of the total fatty acid (TFA), saturated fatty acid (SFA), and unsaturated fatty acid (UFA) contents in infant formula was established using Fourier near-infrared (NIR) spectroscopy combined with partial least squares (PLS) regression prediction. The reliability of the model was verified by cross-validation and external validation. Different wavelengths and different correction algorithms, including smoothing, vector normalization, first derivative, second derivative, and multiple scatter correction (MSC), were used to process the NIR spectra. The correction model correlation coefficients (R²) for TFA, SFA, and UFA contents were 0.9337, 0.9374, and 0.9020, respectively. The coefficient residual predictive deviations (RPDs) were 3.63, 3.65, and 2.90, respectively. These data demonstrated that this NIR mathematical model had good predictive performance. Twenty collected infant formula samples were predicted using the established model. Paired sample t test analysis showed that the chemically measured and predicted values of TFAs, SFAs, and UFAs had no distinct statistical differences.

Key words: near-infrared spectroscopy, infant formula, total fatty acid, saturated fatty acid, unsaturated fatty acid, determination

脂肪酸是膳食脂肪的重要组成部分,也是体内脂肪代谢的中间产物。婴儿配方奶粉中总脂肪酸、饱和脂肪酸和不饱和脂肪酸的含量与婴儿的健康息息相关,充足、合理的摄入脂肪酸有助于婴儿的生长发育,收稿日期:2014-12-29

基金项目:国家重大科学仪器设备开发专项项目(2012Y0090167);北京市 重大科技计划项目(D101105046010003)

作者简介:穆同娜(1979-),女,高级工程师,研究方向为食品质量安全检 测技术 特别是 n-3 和 n-6 系列不饱和脂肪酸可以促进婴幼儿 视网膜、大脑和神经系统发育^[1-2]。传统的婴儿配方奶 粉中脂肪酸含量测定大多基于分析化学方法,其存在 破坏样品、成本高、耗时长、操作复杂、无法实现在 线分析等缺点。近年来,关于奶粉中有毒有害物质的 检测多有报道^[3-4],而关于奶粉脂肪酸快速检测的文献 相对较少。随着化学计量学方法研究的发展,近红外 光谱技术 (NIRS)在过程分析和工业控制领域快速崛 起。NIRS 的核心之一是建立光谱信息和样品成分之 间的函数关系,即建立校正模型。样品的性质如成分 含量及各种物化性质均取决于样品组成。同时 NIRS 具备无损、高效、快速、成本低等特点,利用 NIRS 测量婴儿奶粉中脂肪酸含量可以克服传统方法的诸多 弊端。王若兰等^[5]采用近红外光谱法测定了稻谷的脂 肪酸值,所建立模型的定标相关系数为 0.9026,外部 验证相关系数为 0.948,且标准方法与近红外测定两种 方法经 T 检验无显著差异; 刘景旺等^[6]对奶制品中添 加三聚氰胺的近红外吸收光谱快速检测技术进行了可 行性研究,应用偏最小二乘法建立数学模型。研究结 果表明,应用近红外吸收光谱技术可以对奶制品中添 加三聚氰胺进行快速检测。吴燕涛^[7]等利用偏最小二 乘法对婴儿乳粉中亚油酸和α-亚麻酸等必需脂肪酸进 行了测定,均取得较好的效果。

本文主要是应用近红外光谱技术结合偏最小二乘 法对婴儿配方奶粉中的总脂肪酸、饱和脂肪酸和不饱 和脂肪酸进行快速分析,通过光谱的预处理方法选择, 模型的优化与验证,建立婴儿配方奶粉中总脂肪酸、 饱和脂肪酸和不饱和脂肪酸组成的快速检测方法,为 快速筛查婴儿配方奶粉中脂肪酸组成情况提供一种有 效可行的方法参考。

1 材料与方法

1.1 原料

全部原料均由市场采集,样品来自产地为黑龙江、 陕西、内蒙古、山西、广东、浙江等地的婴儿配方奶 粉生产厂家生产的不同批次样品,共计120个。根据 GB 5413.27-2010《食品安全国家标准 婴幼儿食品和 乳品中脂肪酸的测定》中第一法乙酰氯-甲醇甲酯化法 ^[8],采用毛细管柱气相色谱法对婴儿奶粉中各脂肪酸 的含量进行外标法定量分析。100 个校正集样品的总 脂肪酸、饱和脂肪酸和不饱和脂肪酸含量见表 1。将 样品按照总脂肪酸含量排序,采用隔五选一的方法将 样品分为校正集 100 个,验证集 20 个。

表 1 婴儿配方奶粉样品中不同脂肪酸含量

Table 1 Contents of different fatty acids in infant formulae

成分	M ean/‰	Min/‰	Max/‰	SD
TFA	190.46	138.20	245.8	26.37
SFA	87.7	43.30	123.00	15.93
UFA	53.69	27.55	99.72	14.63

Note: TFA, Total Fatty Acid; SFA, Saturated Fatty Acid, including C4:0, C6:0, C8:0, C10:0, C11:0, C12:0, C13:0, C14:0, C15:0, C16:0, C17:0, C18:0, C20:0, C21:0, C22:0, C23:0, C24:0.; UFA, Unsaturated Fatty Acid, including C14:1n5, C15:1n5, C16:1n7, C17:1n7, C18:1n9, C20:1, C22:1n9, C24:1n9, C18:2n6, C18:3n3, C20:2, C20:3n6, C20:4n6, C20:3n3, C20:5n3, C22:2n6, C22:6n3.

1.2 主要仪器与试剂

乙酰氯(分析纯)、甲苯(色谱纯)、碳酸钠(分 析纯); Spectrum 400 傅里叶变换近红外光谱仪(美国 PE公司),配带积分球漫反射附件采样系统;GC 7890A 气相色谱仪(FID 检测器,美国 Agilent 公司),配毛细 管色谱柱。

1.3 近红外光谱数据采集

将奶粉样品混合均匀后倒入样品皿中压实,置于 漫反射旋转台上进行近红外光谱反射扫描测定。光谱 采集参数为:扫描范围 10000~4000 cm⁻¹,扫描次数 16 次,分辨率为 16 cm⁻¹。以空气作为背景,在环境 温度 25±1 ℃,湿度 45~60%的实验室中进行数据采 集。

1.4 模型的建立及评价

采用 Spectrum Quant+定量分析软件结合偏最小 二乘法 (PLS)建立婴儿配方奶粉中各种脂肪酸测定 的数学模型。采用交互验证和外部检验两种方式对于 模型效果进行评价,以交互验证决定系数 (R²)、校正 标准偏差 (SEC)、预测标准偏差(SEP)、相对分析误差 (RPD)作为衡量定标模型质量优劣的指标。根据 t 检验 结果,衡量模型用于外部样品检验的可靠性。其中 R² 越接近 1、SEC 和 SEP 越小且越接近,表明模型越稳 定,预测精度越高。RPD 值可用于进一步评价模型预 测精度,即 RPD=SD / SEP(SD 为标准偏差)。RPD 值 大于等于 2 时,说明预测效果良好; t 检验结果无显 著差异,则模型的预测可靠性好^{19-11]}。

2 结果与讨论

2.1 奶粉近红外光谱曲线

从图 1 中可以看出,在 10000~8554 cm⁻¹之间具有 较强的噪音,在 7014~4000 cm⁻¹之间具有明显的特征 吸收峰。4000 cm⁻¹附近为甲基 C-H的变形振动、伸缩 振动合频;4260 cm⁻¹和4330 cm⁻¹附近为亚甲基 C-H 的变形振动、伸缩振动组合频;4732 cm⁻¹为 N-H的对 称弯曲振动和伸缩振动的组合频;5300~5100 cm⁻¹为 水分 O-H的合频和 CH=CH的 C-H的合频;6660 cm⁻¹ 和 6940 cm⁻¹附近分别为 N-H和 O-H伸缩振动的一级 倍频,在 9000~8000 cm⁻¹为-C-H伸缩振动的二倍频峰 ^[12~15]。

Fig.1 NIR spectra of infant formulae

2.2 光谱波长范围的选择

表 2 不同脂肪酸的不同波长范围模型参数

Table 2 Results of model parameters of different fatty acids at different wavelength ranges

	光谱区域	校正结果					
成分	/cm ⁻¹	主因子数	\mathbb{R}^2	SEC	SEP	RPD	
TFA	10000~4000	6	0.9142	7.95	8.36	3.15	
	8554~4000	7	0.9226	7.58	8.08	3.26	
	7054~4000	6	0.8950	8.79	9.34	2.82	
SFA	10000~4000	8	0.9084	5.03	5.48	2.91	
	8554~4000	8	0.909 5	5.00	5.42	2.94	
	7054~4000	8	0.9032	5.17	5.58	2.85	
UFA	10000~4000	6	0.8024	6.37	7.54	1.94	
	8554~4000	8	0.8843	5.84	6.33	2.31	
	7054~4000	6	0.7672	7.94	8.78	1.67	

在建立校正模型时,并非所有的光谱数据对建立 模型都有用,如果波长范围选择过大,将包含大量的 无用信息,不能够提高模型的性能,甚至降低模型的 预测效果。因此本文根据图1样品的近红外光谱图, 选择 1000~4000 cm⁻¹、8554~4000 cm⁻¹、7054~4000 cm⁻¹三个样品波长范围进行考察。由表 2 可以看出, 选择不同的波长范围建立模型,将会产生不同的最佳 主因子数。而 1000~4000 cm⁻¹光谱范围内包含了大量 冗余信息,影响了模型的建立,同时降低了模型的性 能;在 7054~4000 cm⁻¹光谱范围内波谱数据信息量不 够充分,不能够与相应的化学值建立最优的相关性。 而在 8554~4000 cm⁻¹光谱范围内,3类脂肪酸在该波 长范围内也均出现了较好的结果。因此饱和脂肪酸、 单不饱和脂肪酸及总不饱和脂肪酸的最优建模光谱范 围均为 8554~4000 cm⁻¹。

2.3 光谱数据预处理

在近红外光谱分析中,为了消除光谱数据受采集

时样品不均匀、高频随机噪音、基线漂移、杂散射光 等影响带来的误差,在建立模型时,常采用不同的光 谱预处理方式对光谱进行处理建模,可以提高模型的 精确性。本文主要采用平滑(smoothing)、 矢量归一 化(SNV)、一阶求导(first derivative)、二阶求导 (second derivative)、多元散射校正(MSC)对光谱 进行处理。表 3 为各脂肪酸采用不同的预处理方式下 模型的 R²、SEC、SEP、RPD 评价参数。

由表 3 可见, 在处理的结果中, 对光谱进行不同 的预处理建立模型,将会产生不同的最佳主因子数。 Smoothing 处理对饱和脂肪酸、不饱和脂肪酸、总脂 肪酸定量校正模型影响不大,而 Second derivative 处 理降低了 3 类脂肪酸的校正模型准确性能,可能因为 Second derivative 处理在提高信号强度的同时也提高 了噪声值,影响模型的性能^[13]。SNV 处理方法对三种 脂肪酸模型的预测能力均有所提高,且与其他预处理 方法比较,SNV 为最佳处理方法,得到的结果分别为 饱和脂肪酸 R²为 0.937 4, RPD 为 3.65;不饱和脂肪 酸 R² 为 0.9020, RPD 为 2.90;总脂肪酸 R² 为 0.9337, RPD 为 3.63。3 类脂肪酸校正模型均具有较高的 R², 而且 RPD 值均大于 2,说明模型具有良好的预测性能。

图 5 TFA 校正集预测值与化学测定值之间的相关性

Fig.5 Correlation between chemically measured results and

correction set predicted results for TFAs

在 8554~4000 cm⁻¹的区间,3类脂肪酸的近红外 光谱经 SNV 处理后,运用 PLS 建立最优的校正模型, 总脂肪酸、饱和脂肪酸、不饱和脂肪酸的近红外光谱 校正模型中预测值与化学测定值之间的相关性分别见 图 5、图 6、图 7。用已经建立的模型对 20 个验证集 中样品的 3 类脂肪酸含量进行预测,结果如图 8、图 9、 图 10,3 类脂肪酸结果显示,3 类脂肪酸含量的分析 模型的预测值与化学测定值较为接近。将近红外的预 测值和化学测定值进行 t 检验,根据 t 检验的双边检 测结果, SFA、UFA、TFA 的 P 值分别为 0.351、0.408、

现代食品科技

Modern Food Science and Technology

0.303,都大于 0.05,表明近红外光谱技术与常规化学 方法得到的检验结果无显著差异,说明采用 NIRS 方 法预测婴儿配方奶粉中饱和脂肪酸、不饱和脂肪酸和 总脂肪酸含量的方法是可行的。

表 3 不同的预处理方式下模型结果

3 结论

本文利用傅里叶近红外光谱结合偏最小二乘法 (PLS)法建立了婴儿配方奶粉中的饱和脂肪酸、不 饱和脂肪酸、总脂肪酸的近红外数学模型,通过不同 预处理方法和波段选择等优化手段,最终确定在波长 范围为 8554~4000 cm⁻¹, 预处理方式为 SNV 时, 3 类 脂肪酸校正模型可取得最好结果,其中总脂肪酸 R² 为 0.9337, RPD 为 3.63, 饱和脂肪酸 R² 为 0.9374, RPD为3.65,不饱和脂肪酸R²为0.9020, RPD为2.90。 用已经建立的模型对验证集中的20个样品进行预测, 结果奶粉中3类脂肪酸含量的预测值与化学测定值较 为接近线性相关系数(r²)分别为 0.9764、0.9197、 0.9253; 同时 t 检验结果表明近红外光谱技术与常规 化学方法得到的检验结果无显著差异。结果表明,近 红外光谱法可用于奶粉中 SFA、UFA、TFA 定量检测 分析,作为传统方法的有效补充,对于快速筛查婴儿 配方奶粉中 SFA、UFA、TFA 含量具有一定的实际应 用意义。

参考文献

- [1] Chardigny JM, Wolff RL, Mager E, et al. Fatty acid composition of French infant formulas with emphasis on the content and detailed profile of trans fatty acids [J]. Journal of the American Oil Chemists' Society, 1996, 73(11), 1595-1601
- [2] Bernardini M, Dal Bosco A, Castellini C. Effect of dietary n-3/n-6 ratio on fatty acids composition of liver, meat and perirenal fat in rabbits [J]. Animal Science, 1999, 68, 647-654
- [3] 罗海英,洗燕萍,侯向昶,等.QuEChERS-超高效液相色谱
 串联质谱法测定乳粉中的双氰胺[J].现代食品科技, 2013, 29(5):1148-1153

LUO Hai-ying, XIAN Yan-ping, HOU Xiang-chang, et al.

Determination of dicy andiamide in milk powder samples by QuEChERS-Ultra-HPLC-Tandem MS [J]. Modem Food Science and Technology, 2013, 29(5): 1148-1153

- [4] 苏永祺,李珮斯,任露陆,等.微波消解-电感耦合等离子体质 谱法测定奶粉中的铬[J].现代食品科技,2010,26(4):415-417
 SU Yong-qi, LI Pei-si, REN Lu-lu, et al. Determination of chromium in milk powder by ICP-MS combined with microwave deigestion [J]. Modern Food Science and Technology, 2010, 26(4):415-417
- [5] 王若兰,王春华,黄亚伟等.小麦脂肪酸值的近红外光谱快速测定研究[J].现代食品科技,2013,29(2):393-396
 WANG Ruo-lan,WANG chun-hua,HUANG Ya-wei. Rapid Determination of Fatty Acid Content in Wheat by Near-Infrared Spectroscopy [J]. Modern Food Science and Technology, 2013,29(2): 393- 396
- [6] 刘景旺,张博洋,李树峰,等.近红外吸收光谱技术快速检测 奶制品中添加三聚氰胺[J].光散射学报,2010,22(3):291-297
 LIU Jing-wang, ZHANG Bo-yang, LI Shu-feng, et al. Near
 - infrared spectroscopy technique for detecting the melamine of dairy products [J]. The Journal of Light Scattering, 2010, 22(3): 291-297
- [7] 吴燕涛,穆同娜,兴丽.主成分分析近红外光谱法快速测定婴儿乳粉中必须脂肪酸含量的研究[J].分析实验室,2013,32(4):59-61

WU Yan-tao, MU Tong-na, XING Li, et al. Study on the determination of essential fatty acids in infant milk powder based on principal component analysis of near infrared spectroscopy [J]. Chinese Journal of Analysis Laboratory, 2013, 32(4): 59-61

- [8] 中华人民共和国卫生部. GB 5413.27-2010 婴幼儿食品和 乳制品中脂肪酸的测定[S].北京:中国标准出版社, 2010 The Ministry of Health of The People's Republic of China.GB 5413.27-2010 National food safety standard determination of fatty acids in foods for infants and young children, milk and milk products [S]. Beijing: China Standards Press, 2010
- [9] Chang C W, Laird D A, Mausbach M J, et al. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties [J]. Soil. Sci. Soc. Am. J., 2001, 65(2): 480-490
- [10] Chang C W, Laird D A. Near-infrared reflectance spectroscopic analysis of soil C and N [J]. Soil. Sci., 2002, 167(2): 110-116
- [11] Fearn T. Assessing calibrations: SEP, RPD, RER and R2 [J]. NIR News, 2002, 13(6): 12-22
- [12] Wu D, He Y. Exploring near and midinfrared spectroscopy

Modern Food Science and Technology

2015, Vol.31, No.4

to predict trace iron and zinc contents in powdered milk [J]. J. Agric. Food Chem., 2009, 57(5): 1697-1673

[13] 徐宁,魏萱,任冰、发酵冬虫夏草茵粉水分腺苷的近红外光谱 定量分析及波段选择[J].光谱学与光谱分析, 2012, 32(7): 1762-1765

XU Ning, WEI Xuan, REN Bing, et al. Near-infrared spectroscopy analysis of adenosine and water in fermentation cordyceps powder and wavelength assignment [J]. Spectroscopy and Spectral Analysis, 2012, 32(7): 1762-1765

- [14] Westad F, Sehmidt A, Kermit M. Incorporating chemical band-assignment in nearinfrared spectroscopy regression [J]. Journal of Near Infrared Spectroscopy, 2008, 16: 265-273
- [15] XU L, SHI P T, FU X S, et al. Protected geographical endication identification of a chinese green tea by near-infrared spectroscopy and chemometric class modeling techniques [J]. Journal of Spectroscopy, 2013(2013): 1-8