胶质芽孢杆菌葡萄糖磷酸变位酶基因的克隆、表达 与酶学性质研究

唐家毅¹, 蓝东明², 王永华², 杨博¹

(1. 华南理工大学生物科学与工程学院,广东广州 510006)(2. 华南理工大学轻工与食品学院 广东广州 510641) 摘要:胶质芽孢杆菌所产胞外多糖作为絮凝剂在食品工业废水处理方面比传统的工业絮凝剂具有更好应用效果而引起了广泛的 关注。葡萄糖磷酸变位酶 (PGM, EC 5.4.2.2) 能将葡萄糖-6-磷酸转变成葡萄糖-1-磷酸而被认为是多糖合成路径上的关键酶之一。本 研究克隆获得来源于自胶质芽孢杆菌 GIM1.16 编码 PGM 的基因 pgm。序列分析表明,该基因包含一个 1710 bp 的读码框。在大肠杆 菌中表达了 pgm 基因并纯化了重组蛋白, SDS-PAGE 电泳结果显示重组的 PGM 分子量约为 63 kDa。重组的 PGM 最适反应温度为 40 ℃,但当反应温度超过 55 ℃时,PGM 基本丧失活性,PGM 在酸性 (pH 4~6)及碱性溶液 (pH 8.5~10)中均表现出低活性,其 最适合反应 pH 值为 7.5。PGM 对底物葡萄糖-1-磷酸的 Kcat 和 Km 值分别为 684 min⁻¹和 0.24 mM⁻¹。本研究为胶质芽孢杆菌菌株的基 因工程改造和代谢工程研究奠定了坚实基础。

关键词: 胞外多糖; 胶质芽孢杆菌; 葡萄糖磷酸变位酶 文章篇号: 1673-9078(2015)3-38-42

DOI: 10.13982/j.mfst.1673-9078.2015.3.007

Cloning, Expression, and Characterization of a Phosphoglucomutase from

Paenibacillus mucilaginosus

TANG Jia-yi¹, LAN Dong-ming², WANG Yong-hua², YANG Bo¹

(1.School of Biological Science and Engineering, South China University of Technology, Guangzhou 51006, China)

(2. College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510641, China) **Abstract:** Exopolysaccharides produced by *Paenibacillus mucilaginous* as flocculants have attracted much attention from wastewater treatment in the food industry because of their better performance over traditional industrial flocculants. Phosphoglucomutase (PGM, EC 5.4.2.2), which is responsible for the transformation of glucose 6-phosphate (G6P) into glucose 1-phosphate (G1P), was considered to be the key enzy me involved in the biosynthesis of polysaccharides. In this article, a *pgn* gene encoding PGM from *P. mucilaginous* GIM1.16 was cloned. Sequence analysis showed that the *pgn* contained a 1710 bp open reading frame (ORF). Subsequently, the *pgn* gene was expressed in *Escherichia coli*, and SDS-PAGE analysis demonstrated that the molecular weight of the recombined protein was 63 kDa. The optimum temperature for the recombined PGM activity was 40 °C, but the enzy me became inactive once the incubation temperature exceeded 55 °C. The recombined PGM showed low activity in acidic conditions (pH 4.0~6.0) and alkaline conditions (pH 8.5~10.0), and the optimum pH for the activity of this enzyme was 7.5. The K_{cat} and K_m values of PGM were 684 min⁻¹ and 0.24 mM⁻¹ on G1P, respectively. This work lays a solid foundation for the construction of genetically engineered strains and metabolic engineering research.

Key words: exopoly saccharide; Paenibacillus mucilaginous; phosphoglucomutase

微生物絮凝剂是一类由细菌、真菌和放线菌等微 生物在生长过程中代谢产生的、具有可降解特性的无 收稿日期: 2014-07-29

基金项目: 广东省自然科学基金(S2012040007734); 中央高校基金 (2014ZM0062)

作者简介: 唐家毅(1982-),男,博士研究生,研究方向: 主要从事发酵工 程研究

通讯作者:王永华(1973-),女,博士,教授,研究方向:工业酶与脂质生物转化及食品安全

毒水处理剂^[1],其主要成分为多糖、蛋白、脂类以及 核酸分子。因其具有安全、绿色环保等优良特性而广 泛应用于食品行业中,如食品工业废水除浊脱色、废 水中油水分离以及饮料澄清等方面^[1-3]。胶质芽孢杆菌 所产的多糖型絮凝剂在处理淀粉废水和重金属吸附等 方面比传统的工业絮凝剂具有更好应用效果而引起了 广泛的关注^[4,5]。但胶质芽孢杆菌产多糖的效率偏低是 其工业化应用的一个瓶颈,通过基因工程技术改造控 制胶质芽孢杆菌合成多糖的关键酶基因,从而提高多 糖的产量是未来大规模生产该絮凝剂的一个可行性方 案。

葡萄糖磷酸变位酶 (PGM, EC 5.4.2.2) 是碳代谢 中的一个关键酶,它可通过葡萄糖 1,6-二磷酸将磷 酸基团从葡萄糖 C-1 位转化到 C-6 位或从葡萄糖 C-6 位转换至 C-1 位^[6]。PGM 是连接糖酵解和糖异生路径 的枢纽,一方面,磷酸化的糖可进入不同的分解代谢 路径,产生能量 (ATP)或者还原力 (NADPH);另 一方面,磷酸化的糖可进入合成代谢路径,合成 UDP-葡萄糖,为多糖的合成提供前体物质^[6]。因此,PGM 是微生物多糖代谢的关键酶,因此 PGM 可作为构建 高产多糖微生物的基因工程菌的理想靶标^[7-9]。如在 Sphingomonas sanxanigenens 中过表达 pgmG基因使鞘 氨醇胶产量提高 17%,达到了 12.5 g/L 的产量^[9]。

本研究分析了胶质芽孢杆菌 KNP414 的全基因组 序列(GenBank Accession No. NC_015690.1)信息, 获得了一个序列为 1710 bp 的假定 pgm 基因。通过设 计特异引物,扩增获得 pgm 基因序列,并在大肠杆菌 BL21(DE3)中进行重组表达。并从温度、pH 以及 动力学等方面对重组的 PGM 酶进行酶学性质研究。

1 材料与方法

1.1 材料

1.1.1 菌种

实验用的胶质芽孢杆菌(*Paenibacillus mucilaginous*)GIM1.16购买于广东省微生物研究所,现由实验室保存。

1.1.2 主要试剂

表达宿主菌为 BL21 (DE3), 克隆载体为 pET23a-CBD,由实验室保存; Primer Star HS、Mark、 DNA 连接酶、限制性内切酶 KpnI 和 XhoI 购买于 Takara 生物工程有限公司; 胶回收试剂盒 EZ.N.A.TM Gel Extraction Kit、质粒提取试剂盒 EZ.N.A.TM Plasmid Mini Kit,购买于广州飞扬生物工程有限公司; 葡萄糖-1-磷酸、葡萄糖-1,6-二磷酸、6-磷酸葡萄糖脱 氢酶、NADP,为 sigma 产品; BCA 蛋白试剂盒,购 自于南京凯基生物;其他化学试剂或药品均为分析纯, 购自于广州围谷润玻璃仪器有限公司。

1.1.3 培养基

(1) LB培养基:蛋白胨 10 g/L,酵母粉 5 g/L, NaCl 10 g/L。

(2) 有氮培养基: 蔗糖 10 g/L, NH₄Cl 1 g/L,
Na₂HPO₄ 1 g/L, MgSO₄ 0.2 g/L, CaCO₃ 0.5 g/L, FeCl₃
5 mg/L。

1.2 实验方法

1.2.1 菌种培养和基因组提取

将菌种接入有氮培养基培养后,37 ℃培养至对数 期,采用离心分离的方法收集菌体,按照吴琦等人^[10] 的方法提取基因组。

1.2.2 pgm 基因克隆

根据胶质芽孢杆菌 KNP414 (GenBank Accession No. NC_015690.1)中发现一组预测的葡萄糖磷酸变位 酶基因序列(GenBank Accession No. YP_004638602. 1),设计引物 pgm1F1/B1 (表 1)对目的片段进行扩 增。

PCR 扩增的的反应体系为 50 µL: Primer Star HS 25 µL,上下游引物各 0.5 µL,基因组 2 µL,无菌水 22 µL,混合均匀后进行 PCR 扩增。pgm 片段 PCR 反 应程序: 98 ℃预变性 5 min, 98 ℃变性 10 s,45 ℃ 退火 15 s,72 ℃延伸 100 s,30 个循环;72 ℃最后延 伸 8 min。将扩增得到的片段用胶回收试剂盒 E.Z.N.A.TM Gel Extraction Kit 对 PCR 产物进行回收 和纯化,操作方法参照说明书。最后将回收到的目的 片段送华大基因进行测序。随后将证实的 pgm 核酸序 列(1710 bp)上传至 GenBank,序列号为 KF528922。

表 1 引物设计

Table 1 Primers used in this study (5'-3')							
Primer	Primer sequence($5' \rightarrow 3'$)						
pgm1F1	ATGAACACACAAACACGGGT						
pgm1B1	TTATTTCTTATCTACACGG						
PGM1F1	TAC GGTACC ATGAACACACAAACACGGGT						
PGM1B1	CGA <u>CTCGAG</u> TTTCTTATCTACACGGCTC						

注:引物PGM1F1下划线为KpnI酶切位点;PGM1B1下划线为KhoI酶切位点。

1.2.3 生物信息学分析

序列分析采用 Blast Software(http://blast.ncbi.nlm. nih.gov/)。分离鉴定的 PGM 的物理化学性质采用 ProParam 工具(http://www.expasy.ch/took/protparam. html)进行分析。序列多重比对采用 Clustal X2.0 软件。 1.2.4 pgm 基因表达载体构建

根据载体序列和目的基因序列特征,设计一对带 酶切位点的引物 PGM1F1/B1(表1)将上述已扩增的 pgm 目的片段克隆于 pET23a-CBD 载体上。采用 KpnI 和 XhoI 同时酶切载体和 pgm 片段。在双酶切的体系 中,载体或 pgm 片段为15 µL,10×M buffer 4 µL,KpnI 和 XhoI 各 2 µL,将水补足 40 µL,37 ℃酶切12 h。 酶切产物回收和纯化后,将目的片段与载体相连,并 转化至大肠杆菌 BL21(DE3)感受态,涂布于含有氨 苄青霉素的LB平板上,挑选单菌落进行菌落PCR鉴定阳性克隆进行进一步的测序,验证序列的正确性。 PGM表达载体图谱见图一。

图 1 重组质粒 pET23a-CBD-PGM

Fig.1 The map of the recombinant plasmid pET23a-CBD-PGM 1.2.5 蛋白表达和纯化

将含有质粒 pET23a-CBD-PGM 的大肠杆菌 BL21(DE3)接种至含有氨苄青霉素(100 µg/mL)的 LB 液体培养基中,37 ℃培养过夜,按照2%的接种量接 入含有相同浓度氨苄青霉素的 LB 液体培养基中进行 扩培,37 ℃恒温培养直至OD₆₀₀达到0.6 后,加入终 浓度为1 mM 的 IPTG 在 20 ℃条件下诱导 20 h。离心 收集菌体,并将菌体悬浮于磷酸盐缓冲液(PBS)中。将 菌体放置超声破碎仪中进行破碎,收集上清液用于下 一步的蛋白纯化。

制备具有高活性再生纤维素按照 Zhang 等人^[11]的 方法进行, 3C 蛋白酶按照 Lan 等人^[12]的方法获得。 蛋白纯化具体操作:将1L的发酵液上清与1g再生 纤维素充分混合,在室温条件下孵育 30 min,含有 CBD 标签的融合蛋白吸附在纤维素上,并通过离心进 行收集。再用 PBS 缓冲溶液冲洗 2次以去除将其它杂 质。为了将目的蛋白从纤维素上洗脱下来,将先前准 备的 3C 蛋白酶按照 1:100 (酶:底物)的量加入至吸附 融合蛋白的纤维素溶浆中,并加入二硫苏糖醇(1 mM),放置4℃冰箱中酶切过夜。离心收集上清后放 置4℃冰箱中用于检测目的蛋白的分子量、纯度以及 酶活性。

1.2.6 葡萄糖磷酸变位酶活性测定

葡萄糖磷酸变位酶酶活性测定体系: 50 mM Tris-HCl缓冲液(pH7.5), 5 mM MgCl₂, 50 μM 葡萄糖 -1,6-二磷酸, 0.48 U 葡萄糖-6-磷酸脱氢酶, 0.2 mM NADP 和收集的上清液,将上述混合液 0.2 ml 加入至 96 孔板中,酶活性测定以添加葡萄糖-1-磷酸开始,测 定 340 nm 处吸光值增加速率。蛋白浓度测定采用 BCA 蛋白试剂盒。一个酶活单位定义为每分钟还原 1 μmol/L NADP 所需的葡萄糖磷酸变位酶的酶量。 1.2.7 酶学性质研究

最适温度:在 50 mM Tris-HCl缓冲液(pH 7.5)中 测定不同温度下(20、25、30、35、40、45、50、55、 60、70℃)葡萄糖磷酸变位酶酶活。将 40℃条件下 所测定的 PGM 酶活设定为 100%,其他温度条件下的 PGM 酶活与其相比较计算相对酶活。

最适 pH值: 37 ℃条件下分别测定酶在 50 mM 柠 檬酸钠缓冲液(pH 4.0 和 pH 5.0)、磷酸盐缓冲液(pH 6.0 和 pH 7.0)、Tris-HCl缓冲液(pH 7.5、pH 8.0 和 pH 8.5)、 glycine-NaOH (pH 9.0 和 pH 10.0)中的活性。将 Tris-HCl缓冲液 (pH 7.5)条件下测定的酶活设定为 100%,其他 pH条件下的 PGM 酶活与其相比较计算 相对酶活。

动力学常数 K_m和 V_{max} 测定:测定含有不同浓度 (1~2000 μM) 葡萄糖-1-磷酸的 Tris-HCl 缓冲液(Ph 7.5)中重组 PGM 酶活性,然后再用米氏方程计算得 到。

1.2.8 数据分析

重组蛋白酶学性质研究实验中,每个实验做三个 平行,采用 Excel 软件计算实验结果的平均值和 SD 值。

2 结果与讨论

2.1 胶质芽孢杆菌 pgm 基因克隆

 通过序列比对发现胶质芽孢杆菌一个假定 pgm 基因序列,按照序列特点设计引物克隆出一条长度为1710
bp片段(图 2),测序结果表明,该基因为目的 pgm 片段。

图 2 胶质芽孢杆菌 pgm 基因 PCR 产物

Fig.2 Hypothetic *pgm* gene fragments of *P. mucilaginosus* GIM1.16

注: M:DNA 标记 DL2000; 1: pgm (1710 bp)。

2.2 胶质芽孢杆菌 pgm1 的生物信息学分析

通过软件分析, pgm 片段编码 569 个氨基酸, 蛋

现代食品科技

Modern Food Science and Technology

白理论分子量为 63 kDa,理论等电点为 4.89。采用 Clustal X2 软件进行多重序列比对, 克隆获得的 PGM 氨基酸序列和已公开报道物种的 PGM 氨基酸序列具 有较大的差异(图3)。胶质芽孢杆菌PGM的氨基酸 序列与 Clostridium thermocellum(55%)(gi: 489613052) 和 Saccharomyces cerevisiae (50%)(gi: 397624)对应的 氨基酸序列相似度最高,而与 Xanthomonas campestris(24%)(gi: 155395)和 SuLfolobus tokodaii (24%)(gi: 15621207)对应的氨基酸序列相似度最低。 尽管如此,对蛋白保守区进行预测时发现活性位点、 金属离子结合位点以及糖结合位点在 PGM 蛋白结构 中仍是高度保守的。来源于胶质芽孢杆菌 PGM 活性 部位位于 143 至 152 位氨基酸序列之间,即符合 GVVITASHNP 序列特征,这与 C. thermocellum 中 PGM蛋白的活性位点是一致的^[13]。149位丝氨酸可能 是参与底物催化的关键位点。同时发现 DIIIGTDPDCDR 为金属离子结合部位的序列特征。位 于 406 至 411 位的氨基酸序列可能参与与底物结合。 尽管国内外已报道很多物种的 PGM 序列, 但本研究 所鉴定胶质芽孢杆菌的 PGM 序列尚属首次,进一步 丰富了PGM 的种类。

Species		Active site		Metal-binding site		Sugar-binding site	
p. mucilaginaosus	(142)	GVVITASHNP	(302)	DIIIGTDPDCDR	(406)	GYBESY	1
Cl. thermocellum	(138)	GVVITASHNP	(297)	DLIIGTDPDCDR	(401)	GFEESY	
A. xylinum	(142)	GVVITPSHNP	(300)	DIAFANDTDADR	(392)	GEESAG	-
E. coli	(140)	GIVITPSHNP	(298)	DLAFANDPDYDR	(389)	GEESAG	
Ps. aeruginosa	(102)	GVMLTGSHNP	(236)	DLGLAFDGDGDR	(324)	GEMSGH	
N. gonorrhoeae	(97)	GVMITGSHNP	(233)	EIGLAFDGDADR	(321)	GEMSGH	
S. paucimobilis	(98)	GIOITGSHNP	(233)	DFGLAFDGDGDR	(321)	GEMSGH	
P, horikoshii	(95)	GAVITASHNP	(237)	DFGVAODGDADR	(325)	GEENGG	
T. kodakarensis	(95)	GAVITASHNP	(237)	DFGVAODGDADR	(325)	GEENGG	
S. tokodaii	(91)	GVVITASHNP	(235)	DLGVAHDGDADR	(325)	FEENGG	
S. cerevisiae	(114)	GIILTASHNP	(285)	AFGAASDGDGDR	(378)	GEESFG	
X. campestris	(95)	GVMVTASHNP	(231)	DFGIAWDGDFDR	(319)	GEMSAH	
H. sapiens	(112)	- IILTASHNP	(282)	DFGAAFDGDGDR	(375)	GEESFG	
O. cuniculus	(112)	-IILTASHNP	(282)	DFGAAFDGDGDR	(375)	GEESEG	
V. furnissii	(95)	SACITASHNP	(243)	DIGIGTOGDADR	(332)	GESSGG	1

图 3 胶质芽孢杆菌 GIM1.16 中 PGM 蛋白与其他种 PGM 蛋白在保 守区域的氨基酸序列的比对。

Fig. 3 Alignment of the obtained PGM with those from other species in the conserved amino acid sequences

注: 这些 PGM 蛋白来源于: Clostridium thermocellum (GI 489613052), Acetobacter xylinum (GI 438427), Escherichia coli (GI 473888), Pseudomonas aeruginosa (GI 12230879), Neisseria gonorrhoeae (GI 730309), Sphingomonas paucimobilis (GI 6103618), Pyrococcus horikoshii (GI 14590777), Thermococcus kodakarensis (GI 51870681), SuLfolobus tokodaii (GI 15621207), Saccharomyces cerevisiae (GI 397624), Xanthomonas campestris (GI 155395), Homo sapiens (GI 585670), Oryctolagus cunicuLus (GI 548497), Vibrio fumissii (GI 503970483).

2.3 重组蛋白酶活性分析

将pgm基因片段克隆至pET23a-CBD表达载体上获得重组表达的载体。通过 IPTG诱导表达,并利用

纤维素纯化和蛋白酶切,获得纯化的无标签重组蛋白, SDS-PAGE 电泳分析结果显示,重组的 PGM 大小为 63 kDa(图 4),这与预测的理论值是一致的。纯化 的 PGM 比酶活为 1990 U/mg。

图4 胶质芽孢杆菌 GIM1.16 纯化的PGM 蛋白的 SDS-PAGE分析。 Fig.4 SDS-PAGE analysis of the purified PGM protein from P. mucilaginosus GIM1.16

注: Lane M: 蛋白 maker; Lane 1: 纯化的 PGM。

2.4 重组 PGM 酶学性质研究

2.4.1 温度对酶活性的影响

图 5 温度对 PGM 活性的影响

Fig.5 Effect of temperature on PGM activity

在 20~70 °C范围内研究了温度对 PGM 酶活性的 影响。如图 5 所示, PGM 在 40 °C时,活性达到最大 值。而后随着温度的逐渐升高,活性随之降低,当超 过 55 °C时, PGM 的活性基本丧失。不同微生物的 PGM 的最适温度是有差异的,如来源于 A. xylinum、F. oxysporum 和 S. sanxanigenens 等嗜温微生物 PGM 最 适 温度范围为 30~40 °C^[6,9,14],而来源于 C. thermocellum 和 P. horikoshii 等嗜热微生物的 PGM 的 最适温度在 70~90 °C之间^[8,13]。因此, PGM 的最适温 度可能与菌种本身的一些生理特性有关。

本研究中重组的胶质芽孢杆菌 PGM 的相对酶活 在 30~40 ℃保持在 78%以上,与来源于嗜温微生物的 PGM 的最适温度范围相同。这与胶质芽孢杆菌的最适 生长温度为 30 ℃左右的报道是相符合的⁴¹。

现代食品科技

Modern Food Science and Technology

2.4.2 pH 值对酶活性影响

在不同 pH 值缓冲溶液中测定 PGM 酶活来确定 pH 值对其活性的影响(图 6)。PGM 在 pH 值为 7.5 时(Tris-HCl 缓冲液), PGM 获得最大酶活,在酸 性及碱性溶液中均表现出低活性。已报道的大部分的 PGM 的最适 pH 集中在中性条件,如来源于 *C. thermocellum*、*A. xylinum*、*F. oxysporum*和*S. sanxanigenens*的 PGM 最适 pH 值在 7.0~7.5之间^[6,9,13, 14],而来源于 P. horikoshii 的 PGM 最适 pH 略高,其 最适 pH 值为 9^[8]。本研究所得到胶质芽孢杆菌 PGM 酶活的最适 pH 范围是 pH7~8之间,这与报道的大部 分 PGM 的最适 pH 值性质是相近的。

2.4.3 PGM 的动力学分析

PGM 对葡萄糖-1-磷酸底物的 K_{cat} 和 K_m 值分别 为 684 min⁻¹和 0.24 mM。就 K_m 值来说,其值越小, 酶对底物的亲和力也越大。不同来源的 PGM 的 K_m 值差异是很大的,本研究中重组 PGM 对葡萄糖-1-磷 酸的 K_m 值比来源于 *C. thermocellum* (0.41 mM) 和*A. xylinum* (2.6 mM) 的 要低^[6, 13],与来源于 S. *sanxanigenens* (0.21 mM)属于同一范围[9],但略高于 来源于 *F. oxysporum* (0.1 mM)和 *P. horikoshii* (0.09 mM)^[8,14]。本研究所得到胶质芽孢杆菌的 PGM 表现出 特异的底物选择性,只能催化葡萄糖-1-磷酸,而来源 于 *S. sanxanig enens* 及 *C. thermocellum* 的 PGM 能同时 作用于葡萄糖-1-磷酸和甘露糖-1-磷酸^[9,13]。

表 2 胶质芽孢杆菌 GIM1.16 PGM 的动力学参数

Table 2 Kinetic parameters of PGM from P. mucilaginosus

GIM1	.16
------	-----

底物	K_{cat}/min^{-1}	K_m/mM	$K_{cat}/K_m/(min^{-1} mM^{-1})$
葡萄糖-1-磷酸	684±28	0.24±0.02	2850

3 结论

分离和鉴定了一个编码胶质芽孢杆菌葡萄糖磷酸 变位酶的基因 pgm。经测序分析,该序列编码 569 个

氨基酸,蛋白的分子量为63 kDa,理论等电点为4.89。 多重序列分析发现,该基因的催化活性位点、金属离 子结合域以及底物结合域均高度保守。酶学性质研究 表明,PGM 酶活性的最适温度和 pH 值分别为 40 ℃ 和 pH 7.5。本研究所得到的编码 PGM 的基因序列以 及对 PGM 酶活性质的研究,为构造基因工程菌以及 代谢工程相关研究奠定坚实的理论基础。

参考文献

[1] 叶永丽,扈晓鹏,高旭东等.微生物絮凝剂在食品工业中的应 用进展[J].中国酿造,2014,266:1-4

YE Yong-li, HU Xiao-peng, GAO Xudong et al. Application Progress of Microbial FloccuLant in Food Industry [J]. China Brewing, 2014, 266: 1-4.

- [2] Gao Q, Zhu XH, Mu J et al. Using Ruditapes philippinarum conglutination mud to produce biofloccuLant and its application ns in wastewater treatment [J]. Bioresource Technology, 2009, 100: 496-500
- [3] Li O, Lu C, Liu A et al. Optimization and characterization of polysaccharide-based biofloccuLant produced by Paenibacillus elgii B69 and its application in wastewater treatment [J]. Bioresource Technology, 2013, 134: 87-93
- [4] Deng SB, Bai RB, Hu XM et al. Characteristics of a biofloccuLant produced by Bacillus mucilaginosus and its use in starch wastewater treatment [J]. Applied Microbiology and Biotechnology, 2003, 60: 588-593
- [5] Lian B, Chen Y, Yuan S et al. Study on the floccuLability of metal ions by Bacillus mucilaginosus GY03 strain [J]. Chinese Journal of Geochemistry, 2004, 23: 380-386
- [6] Kvam C, Olsvik ES. Studies on recombinant Acetobacter xylinum α-phosphoglucomutase [J]. Biochemical Journal, 1997, 326: 197-203
- [7] Degeest B, Vuyst LD. Correlation of activities of the enzymes alpha-phosphoglucomutase, UDP-galactose 4-epimera se, and UDP-glucose pyrophosphorylase with exopolysaccha ride biosynthesis by Streptococcus thermophilus LY03 [J]. Applied and Environment Microbiology, 2000, 66: 3519-3527
- [8] Akutsu JI, Zhang ZL, Tsujimura M et al. Characterization of a thermostable enzyme with phosphomannomutase/phosphoglu comutase activities from the hyperthermophilic archaeon pyrococcus horikoshii OT3 [J]. Journal of Biochemistry, 2005, 138(2): 159-166
- [9] Huang HD, Li XY, Wu MM, et al. Cloning, expression and characterization of a phosphoglucomutase phosphomanno mutase from sphingan producing Sphingomonas sanxanigenens

Modern Food Science and Technology

[J]. Biotechnology Letter, 2013, 35: 1265-1270

[10] 吴琦,王红宁,刘世贵.三种黑曲霉细胞基因组DNA提取方法 的比较[J].生物技术,2003,13(6):30-31

WU Qi, WANG Hong-ning, LIU Shi-gui. Comparison of three methods of genomic dna extraction from aspergillus niger [J]. Biotechnology, 2003, 13(6): 30-31

- [11] Zhang YHP, Cui JB, Lynd LR, et al. Atransition from celluLose swelling to celluLose dissolution by o-phosphoric acid: evidences from enzymatic hydrolysis and supramolecuLar structure [J]. Biomacromolecules, 2006, 7: 644-648
- [12] Lan DM, Tai Y, Wang FH, et al. Efficient purification of native

recombinant proteins using proteases immobilized on celluLose [J]. Journal of Bioscience and Bioengineering, 2011, 113: 542-544

- [13] Wang Y, Zhang YHP. A highly active phosphoglucomutase from Clostridium thermocellum: cloning, purification, character rization and enhanced thermostability [J]. Journal of Applied Microbiology, 2010, 108(1): 39-46
- [14] Kourtoglou E, Anasontzis GE, Mamma D, et al. Constitutive expression, purification and characterization of a phosphogluco mutase from Fusarium oxysporum [J]. Enzyme and Microbial Technology, 2011, 48(3): 217-224