运用 Real-time PCR 建立即食虾中副溶血性弧菌 分子预测模型

孙文烁¹, 靳梦曈¹, 王敬敬¹, 张昭寰¹, 孙晓红^{1, 2, 3}, 潘迎捷^{1, 2, 3}, 赵勇^{1, 2, 3}

(1. 上海海洋大学食品学院,上海 201306) (2. 农业部水产品贮藏保鲜质量安全风险评估实验室,上海 201306)
 (3. 上海水产品加工及贮藏工程技术研究中心,上海 201306)

摘要:运用 Real-time PCR 方法建立不同贮藏温度(4~30 ℃)下即食虾中副溶血性弧菌分子预测模型。将四株副溶血性弧菌混 合接种于即食虾中,利用 Real-time PCR 定量 4~30 ℃下虾中副溶血性弧菌数量,选用 Gompertz 模型拟合得到 10~30 ℃下副溶血性弧 菌最大比生长速率,并用 Linear、Square Root 和 Ratkowsky 模型拟合获得二级分子模型,然后对其验证;选用 Weibull、Log-linear 及 Logistic 模型拟合 4 ℃及 7 ℃下副溶血性弧菌的失活曲线。结果表明 Gompertz 模型 R²均在 0.97 以上,可较好地拟合 Real-time PCR 定量的副溶血性弧菌生长数据;二级分子模型的 R²均在 0.94 以上,准确因子(A_f)和偏差因子(B_f)均在接受范围内,可较好地描绘即食 虾中副溶血性弧菌的生长速率与贮藏温度之间的关系,其中 Linear 模型为最适二级模型;但 Real-time PCR 方法不适用于建立低温下 副溶血性弧菌的失活模型。运用 Real-time PCR 方法可以建立可靠的一、二级分子预测模型,为实际样品中目标菌株的预测模型建立 提供研究基础。

关键词:实时定量荧光 PCR;副溶血性弧菌;分子预测模型 文章篇号:1673-9078(2014)7-142-148

Development of a Molecular Predictive Model of Vibrio Parahaemolyticus

in Ready-to-eat Shrimps by Real-time PCR

SUN Wen-shuo¹, JIN Meng-tong¹, WANG Jing-jing¹, ZHANG Zhao-huan¹, SUN Xiao-hong^{1,2,3}, PAN Ying-jie^{1,2,3}, ZHAO Yong^{1,2,3}

(1.College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China) (2.Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai 201306, China) (3.Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China)

Abstract: A molecular predictive model of *Vibrio parahaemolyticus* on ready-to-eat shrimps was developed and four *Vibrio parahaemolyticus* strains in ready-to-eat shrimps at 4~30 °C were quantitated by Real-time PCR method. Gompertz model was selected as the primary model, which was fitted to achieve maximum growth rate (MGR) for *Vibrio parahaemolyticus* on ready-to-eat shrimps at 10~30 °C. The MGR was then used to establish secondary molecular models as linear model, square root model and Ratkowsky model, and these models were validated subsequently. Weibull model, Log-linear model, and Logistic model were applied to predict inactive curves of *V parahaemolyticus* at 4 °C and 7 °C, respectively. Results showed that the *V parahaemolyticus* growth data could be well fitted by Gompertz model ($R^2 > 0.96$). The R^2 values of linear model, square root model and Ratkowsky model, and the A_f and B_f values were within the acceptable limit, indicating that the relationship between the growth rates of *V parahaemolyticus* and storage temperatures could be well described by the models, especially the Linear model. However, Real-time PCR method could not be used to develop the inactive model of *V parahaemolyticus* at 4 °C and 7 °C. Accuracy molecular predictive models developed by real-time PCR method can aid to establish models of certain pathogens more accurately in the presence of other bacteria.

Key words: Real-time PCR; Vibrio parahaemolyticus; molecular predictive model

收稿日期:2014-01-11,作者简介:孙文烁(1990-),女,硕士研究生,研究方向;食品安全风险评估;通讯作者:赵勇教授

基金项目:国家自然科学基金资助项目(31271870);上海市科学技术委员会部分地方院校能力建设项目(11310501100);上海市科学技术委员会科技创新行动计 划项目(12391901300);上海市科技兴农重点攻关项目(沪农科攻字 2014 第 3–5 号)

副溶血性弧菌(Vibrio parahaemolyticus)是一种 革兰氏阴性短杆嗜盐菌,人类食用该菌感染的海产品 可引发肠胃炎和败血症等肠胃疾病,是我国部分沿海 地区的食物中毒案例中首要病原菌。虾作为亚洲地区 重要的水产品之一^[1],在养殖过程中易受副溶血性弧 菌感染,在温暖季节其自然污染率可达 90%,可带来 副溶血性弧菌食物中毒的潜在食品安全。预测食品微 生物学(Predictive food microbiology)是对食品中微 生物的生长、残存、毒素产生和死亡进行量化的预测 方法,同时结合计算机技术、数理统计和微生物知识, 快速对重要微生物的生长、存活和死亡进行预测,客 观地评价食品在加工、流通和贮藏等条件下的食品质 量安全和货架期,是用于风险评估的有效工具。

目前,关于副溶血性弧菌的微生物预测模型的建 立已相对成熟^[2~4],而这些模型的数据大多来源于传统 的涂布计数法,此定量方法需经过分离培养、生化鉴 定等步骤,操作繁琐、耗时长、灵敏度低且易出现假 阳性。且对于实际虾样品,易被沙门氏菌、单增李斯 特菌及创伤弧菌等多种微生物污染,利用传统涂布方 法定量目标菌株比较困难,即使选择性培养基得到结 果也并不准确,因此用此方法建立实际样品中预测模 型并不可靠^[5]。Real-time PCR 是利用样品的 DNA (cDNA)进行定量的分子生物学技术,此种方法除具有 灵敏度高特异性强准确性高等特点外,该法还可准确 定量实际样品中目标菌株以及活的不可培养状态 (VBNC)细菌,目前已广泛应用于食品样品中微生 物的定量检测⁶¹。彭织云^[7]及 Ye^[5]等利用此方法建立 一级模型,通过验证可以较好地拟合微生物的生长情 况,但尚未有研究利用 Real-time PCR 定量方法建立 二级分子模型及失活模型。

本实验主要利用分子生物学方法 Real-time PCR 监测在 30 ℃、25 ℃、20 ℃、15 ℃、10 ℃贮藏条件 下即食虾上副溶血性弧菌的生长动态,建立一级预测 模型,根据一级模型数据构建二级分子模型,同时尝 试建立低温(7 ℃和4 ℃)条件下副溶血性弧菌在即 食虾上的失活模型,旨在利用 Real-time PCR 定量方 法建立特异性强准确性高的微生物预测模型,为监控 实际样品的食品安全和风险评估提供理论依据。

1 材料与方法

1.1 仪器与试剂

高精度恒温培养箱,日本Sanyan公司;离心机, 德国 Eppendorf 公司;7500fast 荧光定量仪,美国 ABI 公司;Biotek 多功能酶标仪,gene 公司;2'SYBR Green Master,罗氏公司;TCBS 培养基,北京陆桥技术有限责任公司;细菌基因组 DNA 提取试剂盒,天根生化科技有限公司;BagMixer 400 VW 型拍打式均质器,法国 Interscience 公司。

1.2 实验材料

实验用四株副溶血性弧菌: ATCC33847、 ATCC17802购自中国科学院微生物研究所,F18、F36 由本实验室分离并保存,菌株于-20℃冰箱保存;南 美白对虾购自上海浦东新区果园农贸市场,存放于 -80℃;荧光定量PCR引物(*th*-F5'-ACT CAA CAC AAG AAG AGA TCG ACA A-3', *th*-R 5'-GAT GAG CGG TTG ATG TCC AA-3')由上海生工生物工程有限 公司合成。

1.3 菌种活化

各取-20 ℃保存的四株副溶血性弧菌菌种 100 µL,分别接种于9mLTSB(3% NaCl)培养基中,于 37 ℃摇床培养 10~12 h 后,取 100 µL 培养获得的菌液 转接于9mLTSB(3% NaCl)培养基中,37 ℃下摇床 培养 10~12 h,两次活化获得菌悬液。

1.4 虾样品准备

虾样品在 4 ℃下过夜解冻,于 2.5% 盐水中煮沸 20 min,以杀灭背景微生物,煮沸后于生物安全柜内 冷却至室温。

1.5 样品处理及 DNA 提取

分别等量取四株副溶血性弧菌于离心管中混匀, 离心 10 min (3000 g, 15 ℃),弃上清,用 PBS 缓冲液 重悬,最终菌液浓度为~10° CFU/mL。将菌液加入到 500 mL 2.5%盐水中得到接种液,将煮熟的南美白对 虾(~10 g/只)浸泡于接种液中,震荡 30 min,后将 虾取出于生物安全柜内晾干。晾干的即食虾分别置于 30 ℃、25 ℃、20 ℃、15℃、10 ℃、7 ℃及4 ℃恒温 培养箱中培养。定时从不同贮藏温度培养箱中随机取 出虾样本,置于 90 mL 0.85% 生理盐水中均质 2 min, 收集 2 mL 均质液于 2 mL 离心管,离心 1 min (200 g, 4 ℃),移取 1 mL 上清液于 1.5 mL 离心管,离心 2 min (12000 r/min,4 ℃),弃上清,菌体于-80 ℃保存,用于 提取 DNA。DNA 提取按照天根细菌基因组 DNA 提 取试剂盒说明书进行。

1.6 标准曲线的建立

取对数期生长状况下的四株副溶血性弧菌菌液各

1 mL于 10 mL离心管内混合均匀,混合菌液进行适 当梯度稀释后,取 100 µL涂布于 TCBS 平板上,37 ℃ 过夜培养,计数。同时取 1 mL 混合菌液于 1.5 mL离 心管中离心 2 min (12000 r/min, 4 ℃),去上清,菌体 于-80 ℃保存,用于提取 DNA。DNA 提取按 1.4 所述 方法进行,提取得到 DNA 10 倍梯度稀释后进行 Real-time PCR 扩增。根据扩增得到的 C_T值与涂板定 量的 Log₁₀ CFU/g 值制作标准曲线。

1.7 荧光定量 PCR

荧光定量 PCR 的反应体系为 20 μL,各组份为 2'SYBR Green Master 10 μL、正向引物(10 μmol/μL) 1.5 μL、反向引物(10 μmol/μL) 1.5 μL、DNA 模板 2 μL 及 ddH₂O 5 μL。PCR 反应参数为: 95 ℃预变性 20 s; 40 个循环中,每个循环均 95 ℃变性 3 s,60 ℃延伸 30 s。在延伸阶段收集荧光信号,反应结束后,对获 得的信号数据进行处理。

1.8 数据处理

1.8.1 一级生长模型拟合

利用 Origin 8.0 统计软件,通过修正的 Gompertz 模型^{®1}拟合在 30 ℃、25 ℃、20 ℃、15 ℃、10 ℃贮藏 条件下即食虾中副溶血性弧菌的生长数据。修正的 Gompertz 模型表达式为:

 $\log(N_t) = A + C \exp\{-\exp[-B(t-M)]\}$

注: log(Nt)是在时间 t 时菌落计数的对数值, Log₁₀ (CFU/mL); A 是初始菌量, C 是最大菌量和初始菌量之间的差 值, Log₁₀(CFU/mL); M 是生长速率达到最大值时的时间; B 是最大生长速率, Log₁₀[CFU/(g·h)]。 1.8.2 失活模型拟合

应用 Log-linear 模型^[8] (式(2))、Weibull 模型^[8] (式(3))和 Logistic 模型^[8] (式(4))对 Real-time PCR 获得的数据进行拟合,描述 4 ℃及 7 ℃贮藏条件下即 食虾中副溶血性弧菌的失活情况。

$$\log\left(\frac{N_{\rm t}}{N_0}\right) = \frac{t}{D} \tag{2}$$

$$\log\left(\frac{N_t}{N_0}\right) = -bt^n \tag{3}$$

$$\log\left(\frac{N_{t}}{N_{0}}\right) = -\frac{k}{\left(1 + e^{a - rt}\right)} \tag{4}$$

注: N_t 表示贮藏 t 时间后残活细胞数 (CFU/mL); N₀ 表 示贮藏前 (t=0) 细胞数 (CFU/mL); D 表示弧菌降低一个对数 级所需要的时间; t 表示低温处理时间; b 和 n 为曲线形状因子; k 是时间趋向于无穷大时 log(N_t/N₀)的极限值; r 是细菌瞬时降 低率; e 是自然对数底数; a 是积分常数

1.8.3 二级模型拟合

二级模型用来描述温度对微生物生长的影响情况。选用 Linear 模型(式(5))、Square Root 模型(式(6))和平方根方程的扩展式 Ratkowsky 模型(式(7))^[20]拟合生长速率-温度曲线,建立副溶血性弧菌生长速率与温度之间的二级预测模型。

$$\mu = aT + b \tag{5}$$

$$\mu = a(T - T_0)^2$$

$$\mu = a(T - T_0)^2 \{1 - \exp[b(T - T_{\max})]\}$$
(6)
(7)

注: µ为最大比生长速率, Log10[CFU/(g·h)]; T 为生长温 度。T0和Tmax 为理论上副溶血性弧菌生长的最低温度和最高温 度; a 和 b 是模型的参数。

1.8.4 二级模型的评价

选择均方根误差 RMSE(式(8))、准确因子 A_f(式 (9))和偏差因子 B_f(式(10))对模型进行评价^[9]。

$$PMSE = \sqrt{\frac{\sum \left(\mu_{obs} - \mu_{pred}\right)^2}{n}}$$
(8)

$$= 10^{\frac{\sum |\lg(\mu_{pred}/\mu_{obs})|}{n}}$$
(9)

$$c_{c} = 10^{\frac{\sum \lg(\mu_{pred}/\mu_{obs})}{n}}$$
(10)

注:μ_{obs}代表实验观测值;μ_{pred}代表模型预测值;n代表 观测值个数

2 结果与分析

 \boldsymbol{A}

 \boldsymbol{B}

(1)

2.1 标准曲线的建立

本研究建立的标准曲线相关系数 R²为1.00;扩增 效率 E为92.01%,在可接受的扩增效率(80%~120%) 范围内。因此,建立的标准曲线可用于进一步定量。

2.2 一级生长模型的建立

通过 Origin 8.0 软件对 Real-time PCR 实验数据进 行一级模型拟合,得到不同温度条件下即食虾中副溶 血性弧菌的生长动力学模型(表1)及生长曲线(图1)。 由表 1 可知判定系数 R² 的值均在 0.97 以上,表明 Gompertz 模型能较好的描述不同温度下即食虾中副 溶血性弧菌的生长状况。副溶血性弧菌生长参数见表 2,可以看出 10 ℃时最大比生长速率最低为 0.02 Log₁₀ [CFU/(g·h)],而延滞期值最大,可达 24 h;随着贮藏 温度的逐渐升高,副溶血性弧菌最大比生长速率也随 之显著增加,而生长的延滞期缩短,当温度升到 30 ℃ 现代食品科技

时,延滞期可缩短至0.17h。

表 1 不同温度储藏条件下即食虾中副溶血性弧菌的生长动力 学模型

Table 1 Growth kinetics model of Vparahaemolyticus in

ready-to-eat shrimps at different temperatures			
温度/℃	副溶血性弧菌生长动力学模型	\mathbb{R}^2	
10	$log(N_t) {=} 5.56 {+} 2.92 exp\left\{-exp\left[-0.02(t{-}71.35)\right]\right\}$	0.99	
15	$log(N_t)\!\!=\!\!4.96\!\!+\!\!4.95exp\left\{-exp\left[-0.15(t\!-\!10.98)\right]\right\}$	1.00	
20	$log(N_t)\!\!=\!\!4.90\!+\!5.45exp\left\{-exp\left[-0.24(t\!-\!6.52)\right]\right\}$	0.98	
25	$log(N_t)=4.71+5.43exp\left\{-exp\left[-0.37(t-3.52)\right]\right\}$	1.00	
30	$\log(N_t) = 4.55 + 4.82 exp\left\{-exp\left[-0.50(t-2.18)\right]\right\}$	0.97	
	ӥҏѻѡѫѻѡӡѹѻҝҵѯҧ	1/ 4 *	

表 2 不同温度储藏条件下即食虾中副溶血性弧菌生长参数

Table 2 Kinetic parameters of V parahaemolyticus in

弧菌生长曲线

Fig.1 Growth curves of *V parahaemolyticus* in ready-to-eat shrimps at different temperatures from Gompertz model obtained using real-time PCR detection method

2.3 失活模型的建立

● 低温(7℃和4℃)贮藏条件下,即食虾上副溶血性弧菌失活模型如图2所示,4℃条件下 Weibull模型 R²较高,拟合效果较好,而 Log-linear 模型则可以较好的拟合7℃条件下副溶血性弧菌的失活情况(表3)。但由表4可知, Real-time PCR 定量数据之间均无显著性(p>0.05)差异。

2.4 二级模型拟合

根据一级模型得出的副溶血性弧菌在不同温度条件下的最大比生长速率,建立Linear模型、Square Root 模型和 Ratkowsky 模型,拟合结果见图 3。由图 3 可 知,Linear、Square Root 及 Ratkowsky 三种模型的决 定系数 R²分别为 0.99、0.94 及 0.98,因此用 Linear 模型拟合的二级模型,温度与比生长速率之间存在良 好的线性关系。Linear 模型、Square Root 模型和 Ratkowsky模型的预测值和Gompertz模型的观测值见 表 5,对预测值和观测值进行拟合,除 25 ℃和 30 ℃ 贮藏条件外,Linear 模型预测值与观测值决定系数高 达 0.99,对副溶血性弧菌最大比生长速率的拟合效果 较好,而 25 ℃和 30 ℃条件下,Ratkowsky模型预测

图 2 失活模型拟合的低温条件下即食虾中副溶血性弧菌失活 曲线

Fig.2 Inactivation curves of *V. parahaemolyticus* in ready-to-eat shrimps at low temperatures from inactive models obtained using real-time PCR detection method

表 3 低温条件下即食虾中副溶血性弧菌三种失活模型的统计 分析

Table 3 Statistical analysis data for three inactive models of *V* parahaemolyticus in ready-to-eatshrimps at low temperatures

温度/し	Log-nnear 候空 K	Logistic 候空 K	Weibull 供空 K
4	0.95	0.96	0.97
7	0.95	0.92	0.94

表 4 低温条件下即食虾中副溶血性弧菌 Real-time PCR 定量结果

 Table 4 Results of Real-time PCR methods in quantifying the concentration of *V parahaemolyticus* in ready-to eat shrimps at low temperatures

iow temperatures			
取样	Real-time PCR 定量	结果/Log10(CFU/g)	
点	4 °C	7 °C	
1	5.55±0.15 ^a	5.47 ± 0.20^{a}	
2	$5.51{\pm}0.08^{a}$	5.44 ± 0.36^{a}	
3	$5.47 {\pm} 0.06^{a}$	5.35 ± 0.08^{a}	
4	5.39±0.01 ^a	5.37 ± 0.08^{a}	
5	$5.37{\pm}0.08^{a}$	5.29 ± 0.06^{a}	
6	5.32 ± 0.09^{a}	5.18 ± 0.07^{a}	
7	$5.23{\pm}0.12^{a}$	$5.24{\pm}0.12^{a}$	
8	5.19 ± 0.04^{a}	5.17±0.13 ^a	

图 3 不同温度条件下即食虾中副溶血性弧菌的最大比生长速 率拟合的 Linear (a)、Square Root (b)和 Ratkowsky (c) 模型 Fig.3 Linear model (a), Square Root model (b) and Ratkowsky model (c) of the maximum growth rate of *Vparahaemolyticus* at different temperatures

温度/℃

表 5 不同温度条件下副溶血性弧菌最大比生长速率的观测值 和预测值

Table 5 Observed and predicted maximum growth rate of \boldsymbol{V}

parahaemolyticus at different temperatures

温度 /℃	观测值/ ⁻ Log ₁₀ [CFU/(g·h)]	预测值/Log10[CFU/(g·h)]		
		Linear 模型	Square Root 模型	Ratkowsky 模型
10	0.02	0.04	0.12	0.05
15	0.27	0.26	0.25	0.24
20	0.47	0.48	0.44	0.49
25	0.74	0.70	0.66	0.73
30	0.88	0.91	0.94	0.88

2.5 二级模型的评价

Linear 模型、Square Root 模型和 Ratkowsky 模型 的可靠性通过数学参数进行直观评价(表 6)。用 F 统 计量检验模型总体的显著性, Linear 模型和 Square Root 模型的 p 均小于 0.01, 表明模型拟合度较高, 且 均方根误差 RMSE 是说明模型预测值的离散程度的一 种数值指标^[9],由表6可知三种模型的RMSE分别为 0.03、0.06、0.02,表明预测值与实验观测值高度相关 ^[9]: 精确因子 Ar一般用来验证预测模型的准确度, 衡 量预测值和观测值之间的接近程度,偏差因子 Br则是 用来评价预测值和实测值差异程度[21],从表6可以得 出, 三种模型的 A_f和 B_f分别为 1.16、1.50、1.22 和 1.11、1.35、1.15,均在 Ross^[10]划分范围内,表明三种 二级模型能可靠预测 10~30 ℃贮藏条件下的即食虾中 副溶血性弧菌随温度改变发生的生长变化,且 A_f和 Bf值越接近于1,模型越理想^[10],因此Linear模型为 最适二级模型。

表 6 Linear 模型、Square root 模型和 Ratkowsky 模型的 RMSE、

A_f和 B_f的值

Table 6 RMS E, $A_{\rm f}$ and $B_{\rm f}$ values of the linear model, square root

model and Ratkowsky n	lodel
-----------------------	-------

模型类型	RM SE	A_{f}	B _f
Linear 模型	0.03	1.16	1.11
Square Root 模型	0.06	1.49	1.35
Ratkowsky 模型	0.02	1.22	1.15

3 讨论

预测模型是运用数学模型来描述和预测食品微 生物在某些条件下生长和衰亡的情况,目前,已建立 了副溶血性弧菌在培养基[2]和水产品基质如大马哈鱼 [3]、牡蛎的及虾门上的生长模型,但这些模型的数据均 来源于传统的平板计数法。Real-time PCR 作为一种新 兴分子定量方法,除具有快速、简便、特异性强等优 势外,还具有定量复杂背景菌存在下实际样品中的目 标微生物数量的能力,已被广泛用于实际样品检测定 量,如 Robert-Pillot 等^[11]研究表明 Real-time PCR 可以 准确定量虾样品中副溶血性弧菌数量。在此基础上彭 织云等^[7]运用 Real-time PCR 的方法建立了 37 ℃条件 下副溶血性弧菌在即食虾上的一级生长模型,而 Ye 等¹⁵利用 Real-time PCR 的方法建立了单增李斯特菌 在真空冷冻包装猪肉上的一级生长模型,且得到了与 涂布较为一致的预测结果,本研究运用 Real-time PCR 方法建立的 10~30 ℃下四种副溶血性弧菌在即食虾上 混合生长一级模型, R²均在 0.97 以上, 同样证明此种 方法得到的不同温度下副溶血性弧菌的生长数据可以 用 Gompertz 模型进行较好的拟合。其中利用 Real-time PCR 方法建立 10 ℃生长模型,与涂布数据进行比较, 由涂布得到的副溶血性弧菌生长曲线呈现先下降后上 升的趋势(数据未给出),且生长曲线不符合任何一级 生长模型,而 Real-time PCR 的方法得到生长曲线则 呈现缓慢上升的趋势,黄和等^[12]研究也表明 10 ℃冷 藏条件下副溶血性弧菌呈现生长状态,说明在 10 ℃冷 藏条件下副溶血性弧菌呈现生长状态,说明在 10 ℃条 件下 Real-time PCR 定量方法能够从更深层次角度揭 示微生物的实际生长情况。根据建立的一级生长模型, 本研究首次选取 Linear 模型、Square Root 模型及 Ratkowsky 模型建立二级分子模型,三种模型均可以 较好地描绘即食虾中副溶血性弧菌的生长速率与贮藏 温度之间的关系,其中 Linear 为最适的二级分子模型。

本研究首次建立低温条件下的失活模型,通过 Real-time PCR 得到数据虽可以通过失活模型进行拟 合,但是由于细菌死亡后 DNA 并不降解^[13],若细菌 不再生长 DNA 的含量则无显著变化,导致定量数据 之间均无显著性差异(p>0.05),因此不能准确反映细 菌的失活情况,不适用于失活模型的建立。近年来, 有研究者利用叠氮溴化丙锭(PMA)或叠氮溴化乙锭 (EMA)的渗入和交联作用,消除来自死菌 DNA 的 PCR 扩增信号,被认为是有效的活菌检测技术,已被 广泛应用于创伤弧菌^[14]等微生物检测,因此可进一步 研究应用 Real-time PCR 结合 PMA 或 EMA 建立实际 样品中的失活模型。

随着我国食品安全事件越来越多的暴露,微生物 风险评估作为解决食品安全问题的重要手段已经越来 越多的应用于生产实践。风险评估逐步深入和完善的 同时,基础方面的研究更应被重视起来。Real-time PCR 定量方法能够从更加深入的层面揭示实际样品 中微生物生长状况,为风险评估的温度范围、一级模 型构建的宽度、潜在风险识别区的甄别等方面提供更 加全面的信息。

4 结论

本研究首次利用 Real-time PCR 方法建立 10~ 30 ℃下即食虾中副溶血性弧菌一级生长模型,并在此 基础上首次建立二级分子模型,结果显示 Gompertz 模型可以对生长曲线进行较好地拟合,建立二级分子 模型可以较好地描绘即食虾中副溶血性弧菌的生长速 率与贮藏温度之间的关系; Real-time PCR 定量方法虽 不适用于建立低温下即食虾中副溶血性弧菌失活模 型,但从 DNA 的角度揭示了副溶血性弧菌生长状况, 对涂板定量无法描绘的微生物生长情况进行补充说 明。因此,Real-time PCR 技术作为分子生物学方法可 以为预测微生物模型构建提供快速准确的技术支持, 为实际样品定量风险评估提供依据。

参考文献

- Lin T, Wang JJ, Li JB, et al. Use of acidic electrolyzed water ice for preserving the quality of shrimp [J]. Journal of Agricultural and Food Chemistry, 2013, 61, 8695-8702
- [2] Yoon K, Min K, Jung Y, et al. A model of the effect of temperature on the growth of pathogenic and nonpathogenic *Vibrio* parahaemolyticus isolated from oysters in Korea [J]. Food Microbiology, 2008, 25(5): 635-641
- [3] Yang Z Q, Jiao X A, Li P, et al. Predictive model of *Vibrio parahaemolyticus* growth and survival on salmon meat as a function of temperature [J]. Food Microbiology, 2009, 26(6): 606-614
- [4] Parveen S, DaSilva L, DePaola A, et al. Development and validation of a predictive model for the growth of *Vibrio* parahaemolyticus in post-harvest shellstock oysters [J]. International Journal of Food Microbiology, 2013, 161: 1-6
- [5] Ye K P, Wang H H, Zhang X X, et al. Development and validation of a molecular predictive model to describe the growth of *Listeria monocytogenes* in vacuum-packaged chilled pork [J]. Food Control, 2013, 32(1): 246-254
- [6] Ye K P, Zhang Q, Jiang Y, et al. Rapid detection of viable Listeria monocytogenes in chilled pork by real-time reverse-transcriptase PCR [J]. Food Control, 2012, 25(1): 117-124
- [7] 彭织云,王敬敬,唐晓阳,等.运用 Real-time quantification
 PCR 方法建立副溶血性弧菌在即食虾中的生长预测模型
 [J].食品工业科技,2013,34(8):108-110

PENG Zhi-yun, WANG Jing-jing, TANG Xiao-yang, et al. Establishment of *Vibrio parahaemolyticus* growth predictive model by Real-time quantification PCR on ready-to-eat Shrimp [J]. Science and Technology of Food Industry, 2013, 34(8):108-110

[8] 姬华.对虾中食源性弧菌预测模型建立及风险评估[D].无锡:江南大学,2012

JI Hua. Establishment of predictive model and risk assessment for foodborne *Vibrio spp*. in shrimp [D]. Wuxi: JiangNan University, 2012

- [9] 王军,董庆利,丁甜.预测微生物模型的评价方法[J].食品科 学,2011,32(21):268-272
 WANG Jun, DONG Qing-li, DING Tian. An overview of evaluation methods for predictive microbial growth models
 [J]. Food Science, 2011, 32(21): 268-272
- [10] Ross T, Dalgaard P, Tienungoon S. Predictive modelling of the growth and survival of Listeria in fishery products [J]. International Journal of Food Microbiology, 2001, 62: 231-245
- [11] Robert-Pillot A, Copin S, Gay M, et al. Total and pathogenic Vibrio parahaemolyticus in shrimp: Fast and reliable quantification by real-time PCR [J]. International Journal of Food Microbiology, 2010, 143(3): 190-197
- [12] 黄和,蒋志红,雷晓凌,等.冻熟虾中副溶血性弧菌生长模型[J].广东海洋大学学报 ISTIC,2009,29(1):94-98
 - HUANG He, JIANG Zhi-hong, LEI Xiao-ling, et al. Growth model of *Vibrio parahaemolyticus* in frozen cooked shrimp [J]. Journal of Guangdong Ocean University, 2009, 29(1): 94-98
- [13] Wolffs P, Norling B, Rådström P. Risk assessment of false-positive quantitative real-time PCR results in food, due to detection of DNA originating from dead cells [J]. Journal of Microbiological Methods, 2005, 60(3): 315-323
- [14] 张晶,周勇,陶霞,等.创伤弧菌 PMA RTi-PCR 检测技术的建 立[J].中国人兽共患病学报,2013,29(1):54-58
 ZHANG Jing, ZHOU Yong, TAO Xia, et al. Establishment of PMA RTi-PCR detection method for *Vibrio vulnificus* [J]. Chinese Journal of Zoonoses, 2013, 29(1): 54-58