纳米 Al₂0₃溶胶的稳定性及 PVDF/Al₂0₃杂化膜的性能研究

董浩,肖凯军,李香莉,王兆梅

(华南理工大学轻工与食品学院,广东广州 510640)

摘要:以异丙醇铝 (AIP) 为原料,采用溶胶-凝胶法,制备了纳米氧化铝 (AbO3) 溶胶。研究了酸解剂、酸铝比[n(H⁺)/n(Al³⁺)]、 陈化时间等因素对溶胶粒径和稳定性的影响,得到了制备稳定、透明纳米 Al₂O3 溶胶的最佳工艺条件,即酸解剂 HNO3; n(H⁺)/n(Al³⁺)=0.18~0.25;陈化时间 20 h。为了改善聚偏氟乙烯 (PVDF) 膜的性能,通过 PVDF 与 AIP 的原位聚合,制备了不同 PVDF 含量的 PVDF/Al₂O3 杂化膜。采用扫描电镜 (SEM)、原子力显微镜 (AFM)、红外光谱 (FI-IR)、差示扫描量热法 (DSC)、热失重 分析 (TGA) 等手段对膜的结构和性能进行了表征。结果表明:杂化膜的纯水通量随着 PVDF 浓度的增大呈下降趋势,截留率则随 着 PVDF 浓度的增大逐渐升高; AIP 的加入使得杂化膜两相之间存在键合,可以增强 Al₂O3 和 PVDF 之间的化学连接,从而提高杂化 膜的亲水性和机械强度;添加 AIP 后,杂化膜的热分解温度向低温移动,即杂化膜的热稳定性下降;而 AIP 对 PVDF 膜的熔点影响 不明显。

关键词:溶胶-凝胶法; 粒径; PVDF/Al₂O₃杂化膜; 热稳定性 文章篇号: 1673-9078(2012)12-1621-1626

Stability of Nano-Al₂O₃ Sol and Properties of

PVDF/Al₂O₃ Hybrid Membrane

DONG Hao, XIAO Kai-jun, LI Xiang-li, WANG Zhao-mei

(College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China) **Abstract:** The nano-Al₂O₃ sol was prepared in a sol-gel process, using AIP as raw material. The effects of peptization agent, n(H⁺)/n(Al³⁺) and aging time on the particle size and stability of the sol were studied. The optimal conditions of preparing stable and transparent nano-Al₂O₃ sol were obtained. HNO₃ was chosen as the best peptization agent. The optimal n(H⁺)/n(Al³⁺) ratio and aging time were 0.18~0.25 and 20 h, respectively. Then, in order to improve the ultrafiltration performance of PVDF membrane, PVDF/Al₂O₃ hybrid membranes with different PVDF contents were prepared via the in-situ polymerization of AIP and PVDF in a sol-gel process. The structure and properties of the hybrid membranes were characterized by means of SEM, AFM, FI-IR, DSC and TGA. The results indicated that the pure water flux of hybrid membranes declined with the increase of PVDF concentration, while the rejection rate increased gradually. The introduction of AIP can enhance the chemical bond between PVDF and Al₂O₃ of the hybrid membrane and hence greatly improved the mechanical properties and hydrophilicity of these membranes. The thermal decomposition temperature of hybrid membrane decreased to a lower temperature with the introduction of AIP, which meant tht the thermostability of hybrid membrane declined, while AIP had no obvious effect on the melting point of hybrid membrane.

Key words: sol-gel method; particle size; PVDF/Al2O3 hybrid membrane; thermostability

聚偏氟乙烯(PVDF)具有很好的化学稳定性,被 广泛的应用于膜分离材料的制备行业^[1~4]。但是由于 收稿日期: 2012-07-24

基金项目:国家自然科学基金项目(21176092);十二五"国家科技支撑计 划课题(2011BAE16B04);广东省产学研项目(2010B090400512、粤财教 ([2011]363 号)

作者简介:董浩,男,硕士,研究方向: 膜材料制备及应用技术 通讯作者:肖凯军,男,教授,博导,研究方向:新型膜材料的制备及应用、 食品保藏技术 PVDF 的表面能低,有极强烈的疏水性,易导致表面 污染,使膜的性能降低,从而限制了它在更多领域的 应用。因此,有效的改性已经成为高性能 PVDF 膜的 主要研究内容。PVDF 膜的改性方法主要有接枝、共 聚和有机共混等^[5]。有机膜容易成孔,孔径分布相对 均匀,但是,存在强度低等问题;而无机材料强度高,化学稳定性好。因此,在 PVDF 有机材料中,引入无 机材料而进行改性形成有机-无机杂化膜,已经成为近 年来 PVDF 膜制备方面的研究热点。近年来杂化膜中

研究的无机组分主要有 SiO₂、ZrO₂、Al₂O₃、TiO₂ 和 一些小分子的无机盐。Al₂O₃ 纳米颗粒对水具有较强 的亲和力,从而使其成为 PVDF 膜的改性的优良候选 材料^[6-9]。

目前对 PVDF 膜的无机改性大都是将纳米氧化物 颗粒直接添加在铸膜液里,这对无机纳米颗粒的粒径 要求很高,且分散无机颗粒耗时长,易团聚。溶胶-凝胶法能在较温和的条件下形成无机骨架,易于成型 和掺杂,能够在有机相中引入无机相而不会降低其性 能^[10]。

本文利用 AIP 在酸液条件下能水解-聚合生成铝 氧聚合物的特点,以 AIP 为原料,采用溶胶-凝胶法制 备了稳定、透明的纳米 Al₂O₃ 溶胶。并利用乙烯基三 甲氧基硅烷(A-171)为偶联剂,AIP 为无机前驱体, 与 PVDF 混合形成铸膜液,通过溶胶-凝胶法制备具有 化学键相结合的 PVDF/Al₂O₃ 杂化膜。研究了 PVDF 含量及 AIP 的添加对铸膜液超滤性能及结构的影响, 为无机/有机杂化膜的制备提供理论基础。

1 材料与方法

1.1 材料与仪器

H₂SO₄、HCl、HNO₃(A.R.),北京化工厂; PVDF: FR 904,上海有机氟材料厂; AIP(C.P.),国药集团 化学试剂有限公司; N,N-二甲基乙酰胺(DMAc) [A.R.],天津市富字精细化工有限公司;聚乙烯吡咯 烷酮(PVP,K30),德国进口分装;乙烯基三甲氧基 硅烷(A-171),哈尔滨化工研究院;牛血清白蛋白(Mw =67000)[B.C],上海伯奥生物科技有限公司。

DF-101S 集热式恒温加热磁力搅拌器, 巩义市英 裕予华仪器厂; BS2202S 电子分析天平, Sartorius 公 司; pHS-3C 型酸度计,上海虹益仪器厂; Synthesis-A10 超纯水机, Millipore 公司; Vector 33 傅立叶变换红外 光谱仪,德国 Bruker 公司; E600 偏光显微镜,日本 尼康 Nikon 公司; UV-2102 PC 型紫外可见分光光度 计,UNIC (上海) 仪器有限公司; DSC Q200 差示扫 描量热仪,美国 TA 仪器公司; TGA Q500 热失重分析 仪,美国 TA 仪器公司; NOVA NANOSEM 430 场发 射扫描电镜,荷兰 FEI 公司; ZS Nano 马尔文纳米粒 度分析仪,英国 MALVERN 公司。

1.2 纳米 Al₂O₃ 溶胶的制备

1.2.1 制备纳米 Al₂O₃ 溶胶的工艺流程

AIP→水解→酸解→蒸醇→陈化→溶胶→纳米Al₂O₃溶胶 1.2.2 纳米 Al₂O₃ 溶胶的制备

取计量的去离子水于三口烧瓶中,油浴加热至 80 ℃,恒温搅拌,将已磨细的 AIP 缓慢加入,全部 加完后回流搅拌1h,然后按一定比例加入酸解剂进行 酸解,再敞口蒸醇1h,而后进行胶溶并于87℃陈化 一定时间,最终得到纳米Al₂O₃溶胶。

1.2.3 溶胶粒径的测定

制备好的纳米 Al₂O₃ 溶胶于室温搅拌 2 h 后,利用 ZS Nano 马尔文纳米粒度分析仪测定溶胶粒径分布。考察酸解剂和陈化时间对溶胶粒径分布的影响。 1.3 PVDF/Al₂O₃ 杂化膜的制备及其性能表征

1.3.1 PVDF/Al₂O₃杂化膜的制备

取不同含量的 PVDF 分别溶解于 DMAc 溶剂中, 配制成不同浓度的溶液,加入适量的偶联剂,然后加 入一定含量的 AIP,搅拌溶解一段时间后滴加去离子 水,87 ℃水解 1 h 后,将体系温度降到 60 ℃以下滴 加 HNO3 催化胶溶,然后加入成孔剂 PVP,87 ℃继续 搅拌 20 h 得到均质的铸膜液。在室温下静置 24 h,使 该溶液充分脱泡备用。将脱泡后的铸膜液在室温下刮 制成平板膜,在空气中放置一定时间后,浸入 50%乙 醇去离子水溶液中浸泡 5~7 d,取出在空气中晾干即为 Al₂O₃/PVDF 杂化膜。Al₂O₃/PVDF 杂化膜的具体制备 工艺参考文献^[10~11]。

1.3.2 纯水通量的测定

膜的通量是指在一定工作压力下,单位时间、单位膜面积上所透过膜的液体体积。以纯水为介质,用自制的超滤杯在 0.1 MPa 室温条件下测定膜的纯水通量。具体测试方法参考文献^[10-12]。

1.3.3 截留率的测定

膜的截留率是表征膜性能的另一个重要指标。它 表示膜对某种溶质的截留能力,本实验采用的介质是 牛血清蛋白(BSA),具体测试方法参考文献^[10-12]。 1.3.4 SEM 电镜观察膜结构

将待测膜在液氮中冷冻并迅速掰断,再经真空脱 水处理,喷铂金,即可用于 SEM 断面测试。表面则 由干膜直接镀金后观察。

1.3.5 FI-IR 测试

在50 ℃下将杂化膜真空干燥3h,将溶胶烘干后, 用傅立叶红外光谱仪对溶胶以及膜的化学结构进行表 征。

1.3.6 原子力显微镜 (AFM)

将待测膜切成 15 mm×15 mm 的膜片,晾干备用。 采用敲击模式进行测试,并用 AFM 自带的分析软件对 膜的表面形貌进行定性和定量分析。根据表面积及表 面积偏差和表面粗糙度来分析膜的表面状况。选择扫 描面积为1 µm×1 µm的膜表面二维图象及其横截面的 线型轮廓图,将光标在膜表面的微孔周围定位。统计 至少 30 个孔来确定膜的平均孔径及孔径分布。 1.3.7 DSC测试

准确称取微量样品,室温下将样品放入样品台上, 用液氮将样品从室温冷却到-80 ℃,然后保持升温速 度:10 ℃/min;测量范围:-80~250 ℃,气氛:N₂; 气体流速:40 mL/min;样品量:约2 mg。

1.3.8 TGA测试

热分解温度的测定采用美国 TA 仪器公司 TGAQ 500 热重分析仪,测试条件为:氮气环境下,气体流速为 30 mL/min,升温速率为:10 ℃/min。测定范围为:室温-650 ℃。

2 结果与分析

Fig.1 Effects of different peptization agents on particle size

of the sol

在 AIP 含量为 2%, n(H⁺)/n(AI³⁺)=0.2:1, 87 °C为水 解条件下,分别采用 H₂SO₄、HNO₃、HCI 为酸解剂所 得溶胶的粒径如图 1 所示。由图 1 可见,采用 HNO₃ 和 HCl 作为酸解剂制备的溶胶粒径较小(平均粒径分 别为 31.84 nm、63.65 nm)。而采用 H₂SO₄ 作为酸解剂 制备得到的溶胶粒径则明显偏大,而且有两个分布范 围(57.12 nm 和 222.3 nm),未能取得单一粒度分布 溶胶。采用 H₂SO₄ 制备的溶胶液呈乳白粘稠状态,静 止 2 h 后即可见到底部明显白色沉淀。而用 HNO₃ 和 HCl制备的溶胶则澄清稳定,放置 10 日也未见明显沉 淀。相对于 HCl,采用 HNO₃ 催化制备的溶胶粒径更小。 这可能是因为水化的 Cr比水化的 NO₃大,因此被其包 围的溶胶粒子也就大了。另外,使用 HNO₃ 可避免将负 离子引入制成的杂化膜中。因此,本文选用 HNO₃ 溶液 作为酸解剂。

2.2 酸铝比对溶胶稳定性的影响

表1列出了AIP质量分数为2%、解胶温度为87 ℃的条件下,不同n(H⁺)/n(Al³⁺)对溶胶稳定性的影响。

从表1可以看出,在相同反应条件下,胶体的酸度 对胶体的稳定性有很大影响。随着酸度增加,AIP的溶 解度提高。当n(H⁺)/n(Al³⁺)<0.18时,AIP不能完全胶溶, 而当 n(H⁺)/n(Al³⁺)>0.3时,溶胶在1 d后凝胶化。这是 因为胶体的形成和稳定性主要取决于胶体质点双电层 间的斥力及范德华引力。

表1 n(H)/n(AI^{³+}) 对溶胶稳定性的影响

Table 1 Effects of n(H⁺)/n(Al³⁺) on stability of the sol

$n(H^+)/n(Al^{3+})$	稳定性	透明性
0.05	不能完全胶溶	少量沉淀
0.1	不能完全胶溶	少量沉淀
0.15	不能完全胶溶	微量沉淀
0.18	稳定	透明
0.21	稳定	透明
0.25	稳定	透明
0.3	触溶	果冻状

AIP在HNO3的作用下会产生溶解-沉淀作用和液-固界面双电层作用。当AIP中加入HNO3时,H*被吸附 在粒子表面,NO3则在液相中重新排布,从而在粒子 表面形成双电层。双电层的存在使粒子间相互排斥, 当排斥力大于粒子间吸引力时,聚集的粒子就分散成 小粒子,形成溶胶。若酸度过低,即HNO3的加入量不 足,不足以克服粒子间的长程范德华引力,AIP就不能 彻底胶溶,从而在溶胶中残留未胶溶的白色沉淀;相 反,若酸度太高,即HNO3的添加过量,胶粒表面的电 荷密度增大,液相中NO3的浓度亦增加,加大了溶液 离子强度,这样反而会压缩双电层,溶胶发生聚集作 用的程度也会随之增加,溶胶变的不稳定,易发生团 聚,溶胶呈现混浊[13]。因此,从上述实验结果可知, 利用AIP制备稳定的纳米AbO3溶胶时,适宜的 n(H⁺)/n(Al³⁺)范围应在0.18~0.25之间,选择n(H⁺)/n(Al³⁺) 为0.24。

2.3 陈化时间对溶胶粒径的影响

Fig.2 Effects of aging time on particle size of the sol

AIP 经过水解、酸解后得到 Al₂O₃ 溶胶液。但是, 若要取得稳定的和具有单一粒度分布的溶胶液,还需 要经过最后陈化过程。以 HNO₃为解胶剂,AIP 含量为 2%,在n(H⁺)/n(Al³⁺)为0.24,水解温度87℃下,分别 陈化0、4、10、20h对制备的溶胶粒径的影响见图2。 由图2可见,溶胶粒径明显随陈化时间的增加而减小。 陈化20h后,可以获得稳定性好、粒径分布窄的纳米 Al₂O₃粒子,溶胶粒径减小至37nm左右。这可能是由 于在加热搅拌的酸性环境中,陈化过程就是一个Al₂O₃ 溶胶的粒度均匀化过程。大颗粒溶胶和少数团聚的胶 团不断的被分散,最终使得溶胶体系的平均粒径变小, 粒径分布范围变窄。本文采用陈化温度87℃,陈化时 间20h的陈化工艺来制备Al₂O₃ 溶胶。

2.4 PVDF浓度对杂化膜结构与性能的影响

PVDF 浓度是影响膜结构形态和性能的一个重要因素。

图 3 是不同 PVDF 浓度下杂化膜的纯水通量和截

留率的变化趋势,AIP的含量均为20%。从图3中可以看到,当PVDF浓度为15wt%时,膜的纯水通量为4496 L/(m²·h),而当PVDF浓度为21wt%时,水通量下降为954 L/(m²·h),杂化膜的通量随着PVDF浓度的增大呈下降趋势,截留率则随着PVDF浓度的增大逐渐升高。

图 4 是含不同 PVDF 浓度铸膜液所制备的杂化膜 的 SEM 照片, AIP 的含量均为 20%。通过不同 PVDF 浓度的 SEM 观察可知,当 PVDF 浓度为 15 wt%时, 杂化膜表面孔径较大,但分布并不十分均匀,膜上截 面处形成了大的指状孔,且互相连通,而在下截面处 形成了海绵状结构,皮层较薄;当铸膜液浓度增大至 17 wt%时, 膜的表面变得致密, 孔径变小, 无较大微 孔存在,断面皮层增厚,膜内指状孔结构减少,孔径 变窄,而在指状孔下面形成的海绵状结构增厚。这是 因为液膜中任何一点的相分离类型的决定性因素是沉 淀时此处的聚合物浓度,在液膜刚浸入凝固浴时,液 膜中的溶剂大量浸入凝固浴中,液膜中溶剂损失很大, 速度很快, 而此时非溶剂扩散进液膜的量相对很小, 这就意味着在膜/凝固浴界面处的聚合物浓度增加了, 此处的体系组成浸入了凝胶区,于是很薄的致密凝胶 层生成。聚合物浓度越高,越容易生成致密皮层。这 个皮层对于亚层中溶剂的向外扩散是一个阻力,使溶 剂与非溶剂之间的传质阻力增大,另外随着制膜液中 PVDF 浓度的增加, 溶液粘度也随之增加, 从而使铸膜 液中的溶剂与凝固浴中的非溶剂动力学交换过程明显 减慢, 使得延迟相分离行为更加明显, 抑制指状孔生 成,生成的膜表面层更致密,表现为膜孔径变小和孔 隙率降低,因此导致膜的水通量减小,截留率则上升, 而这也与图3中水通量和截留率的变化规律相匹配。

2.5 FT-IR 表征

在 50 ℃下将膜真空干燥 3 h,用 FT-IR 对膜结构进 行表征。表征结果可参考本课题组前期工作^[10]。杂化 膜中 PVDF 的 α 晶形吸收峰明显减弱,而 β 晶形吸收 峰则增强,表明纳米 Al₂O₃ 粒子的存在改变了 PVDF 分子的应力分布,使 PVDF 的晶形发生了转变。此外, 杂化膜在 601 cm⁻¹ 和 1502 cm⁻¹处出现新峰,说明掺杂 Al₂O₃ 后,两相之间存在键合。

2.6 AFM 分析

图 5 是纯 PVDF 膜及 PVDF/A₂O₃ 杂化膜的 AFM 图。从图 5 中可以看出, PVDF 膜经杂化后表面的粗糙 度降低,因此更耐污染。另外,膜的污染很大程度是 由于被截留的杂质在膜的表面沉积形成凝胶层所致, 杂化膜中纳米 Al₂O₃ 的强亲水性可使膜在应用时很快 在膜表面形成一层亲水膜,使凝胶层不易形成,即使

Modern Food Science and Technology

形成凝胶层也会在水力冲刷作用下容易脱落,从而大 大提高了膜的耐污染能力。

Fig.6 TGA curves of PVDF hybrid membranes with different

AIP contents

通过 TGA 研究了杂化材料的热降解过程,分析两 相相互作用与杂化材料热稳定性之间的关系。图 6 是 纯 PVDF 膜和不同 AIP 添加量下 PVDF 杂化膜的 TGA 曲线,相应的热失重数据列于表 2 中。由 TGA 测试结 果可见,加入 AIP 后,与纯 PVDF 膜相比,杂化膜的 热分解温度向低温移动。当 AIP 含量为 20%时,50% 热失重温度从 PVDF 膜的 454.13 ℃降低到 395.75 ℃。 随着 AIP 的增加,杂化膜的热分解温度逐渐降低。这 是因为本文采用的工艺是在 PVDF 体系中原位生成无 机组分,使无机网络和有机分子链之间形成相互渗透 的聚集态结构,Al₂O₃ 网络在 PVDF 分子链间的渗透削 弱了 PVDF 分子链间的相互作用,导致杂化膜中有序 排列区域下降,结果使杂化膜的热稳定性下降。

表 2 不同 AIP 含量下杂化膜的热分解温度

Table 2 Thermal decomposition temperature of $PVDF/Al_2O_3$

_	hybrid membranes with different AIP contents					
	AIP 含	初始分解	失重	失重	失重	失重
_	量/%	温度/℃	5%/°C	10%/°C	25%/°C	50%/°C
-	0	248.49	356.14	380.77	428.19	454.13
	4	243.43	323.36	335.38	357.55	407.51
	12	22101	319.06	326.32	347.35	399.25
	20	173.25	320.91	326.31	348.36	395.75
Mulahe manager / 0/	0.0 c -0.2 -0.4 -0.6 -0.8 -1.0		- PVDF 房 - PVDF/A	.膜 1,0,杂化膜	V	200 250
		-100 -50	т	50 10 emperature	0 150 /10	200 250
	图 7 纯 PVDF 膜与 PVDF/A1,0。杂化膜的 DSC 曲线					C 曲线

Fig.7 DSC curves of pure PVDF membrane and PVDF/Al₂O₃

hybrid membrane

表 3 PVDF 膜及杂化膜的熔点和熔融焓

Table 3 The melting point and melt enthalpy of PVDF membane

and	hybrid	membrane
-----	--------	----------

膜样品	熔点 T _m /℃	熔融焓 ∆Hm/(J/g)
PVDF 膜	169.07	49.11
PVDF/Al ₂ O3杂化膜	170.29	47.46

图7所示为纯PVDF 膜与AIP含量为12%时PVDF 杂化膜的DSC测试结果。表3是两种膜的熔点及熔融 焓数据。结果显示,与纯PVDF 膜相比,PVDF/Al₂O₃ 杂化膜的熔点没有明显变化,熔融焓略微降低,表明 杂化后 PVDF 的结晶度下降,主要是因为分布在聚 PVDF 基质中的Al₂O₃粒子,削弱了PVDF 分子链间强 烈的相互作用,降低了有序度,使有序区域内的自由 体积增大。

3 结论

本文采用溶胶-凝胶法制备了稳定、透明的纳米 Al₂O₃ 溶胶,并确定了制备稳定、透明纳米 Al₂O₃ 溶胶 的最佳工艺条件,即酸解剂 HNO₃; n(H⁺)/n(Al³⁺) =0.18~0.25; 陈化时间 20 h。然后在此基础上成功制备 了 PVDF/Al₂O₃ 杂化膜。通过 SEM、AFM、FI-IR、DSC、

现代食品科技

Modern Food Science and Technology

TGA 等测试手段研究了 PVDF 添加量对膜的性能和结构的影响。结果发现:杂化膜的纯水通量随着 PVDF 浓度的增大而下降趋势,截留率则随着 PVDF 浓度的增大逐渐升高;纳米 Al₂O3 的添加可以增强 Al₂O3 和 PVDF 之间的化学连接,从而提高杂化膜的亲水性和机械强度;热分析显示:当 AIP 含量为 20%时,50%热失重温度从 PVDF 膜的 454.13 ℃降低到 395.75 ℃,说明添加 AIP 后,杂化膜的热分解温度向低温移动,即杂化膜的热稳定性下降。

参考文献

- [1] 肖凯军,雷鸣,李凤庭.介孔 SiO2 膜的制备和性能研究[J].现 代食品科技,2009,25 (2):168-171
- [2] S S Madaeni, S Zinadini, V Vatanpour. A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO₂nanoparticles [J]. J. Membr. Sci., 2011, 380: 155-162
- [3] B Deng, M Yu, X Yang, et al, Antifouling microfiltration membranes prepared from acrylic acid or methacrylic acid graftedpoly (vinylidene fluoride) powder synthesized via pre-irradiation induced graft polymerization [J]. J. Membr. Sci., 2010, 350: 252-258
- [4] E Yuliwati, AF Ismail, T Matsuura et al, Effect of modified PVDF hollow fiber submerged ultrafiltration membrane for refinery wastewater treatment [J]. Desalination, 2011, 283: 214-220
- [5] ZhaoHong Meng, HuiLing Liu, Yan Liu, et al, Preparation

and characterization of Pd/Fe bimetallic nanoparticles immobilized in PVDF·Al₂O₃ membrane for dechlorination of monochloroacetic acid [J]. J. Membr. Sci., 2011, 372: 165-171

- [6] Yong Wei, Hua-Qiang Chu, Bing-Zhi Dong, et al, Effect of TiO₂ nanowire addition on PVDF ultrafiltration membrane performance [J]. Desalination, 2011, 272: 90-97
- [7] Zhang M G, Nguyen Q T, Ping Z H. Hydrophilic modification of poly (vinylidene fluoride) microporous membrane [J]. J. Membr. Sci., 2009, 327(1/2): 78-86
- [8] Kai-Shiun Chang, Tomohisa Yoshioka, Masakoto Kanezashi, et al, Molecular simulation of micro-structures and gas diffusion behavior of organic-inorganic hybrid amorphous silica membranes [J]. J. Membr. Sci., 2011: 381: 90-101
- [9] LY Yu, Z L Xu, HM Shen, et al., Preparation and characterization of PVDF-SiO₂ composite hollow fiber UF membrane by sol-gel method [J]. J. Membr. Sci., 2009, 337: 257-265
- [10] 李香莉,肖凯军,郭祀远,PVDF/Al₂O₃ 杂化膜的制备与性能 表征[J].华南理工大学学报(自然科学版),2010,38(7):112-116
- [11] 李香莉.PVDF/Al₂O₃杂化膜的制备及其性能研究[D].华南 理工大学,2010
- [12] 肖凯军,郭丹丹.光照溴化诱导接枝聚合两步法对 PAN/ PSU 共混膜的表面改性[J].塑料工业,2009,37(8):70-73
- [13] 罗远宏.γ-Al₂O₃微孔膜制备及其电场作用下膜过程的研究[D].华南理工大学,2006