动物性食品中诺氟沙星残留的荧光免疫分析方法研究

余宇燕', 陈莉', 卢玲', 张红艳', 滕海英'

(1. 福建中医药大学药学院, 福建福州 350108) (2. 包头师范学院生物学院, 内蒙古包头 014030)

摘要:利用杂交瘤技术制备了诺氟沙星的单克隆抗体,建立了以抗诺氯沙星单克隆抗体为基础的荧光免疫分析方法,工作曲线表明在10~500 μg/L浓度范围内呈良好的线性关系,回归方程为: I=31.92 logC-5.0083,相关系数r=0.9965,对诺氟沙星最低检出限达6.09 μg/L,抑制中浓度为52.88 μg/L,且对其它结构类似喹诺酮类药物均有特异性识别。本法可应用于检测动物性食品中残留的微量诺氟沙星。

关键词: 诺氟沙星; 单克隆抗体; 荧光免疫分析法; 残留

文章篇号: 1673-9078(2012)7-856-858

Development of Fluorescence Immunoassay for Norfloxacin

Residue in Animal Derived Food

YU Yu-yan¹, CHEN Li¹, LU Ling², ZHANG Hong-yan¹, TENG Hai-ying¹

(1. College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China) (2. Baotou Normal College, the life science college, Baotou, 014030, China)

Abstract: A monoclonal antibody (MAb) against norfloxacin was prepared using hybridom a techniques, and indirect competitive Fluorescence immunoassays for norfloxacin (NFLX) was established successfully. The regression equation was I=31.92logC-5.0083 (r= 0.9965) with the limit of detection about 6.09 μ g/L. The linear detection was ranged well from 10μ g/L to 500μ g/L. The cross-reaction tests indicated that most structurally related phenolic compounds did not interfere with the analysis of NFLX. The anti- NFLX antibody had excellent recognition specificity to NFLX. The result developed in this study indicates this method would practicable to detection norfloxacin residues in animal derived food.

Key words: norfloxacin; monoclonal antibody; fluorescence immunoassay; residue

诺氟沙星(Norfloxacin,NFLX)属于第三代氟喹诺酮类抗菌药物,具有抗菌谱广,抗菌作用强,副作用小,组织分布较好等药动学特点。但其不合理使用易在动物组织中造成残留,已引起人们的广泛关注。目前,国内外对NFLX残留的主要分析方法是光谱法和色谱法等[2~6]。有报道建立NFLX酶联免疫分析法,但未对实际样品检测作分析,而荧光免疫分析方法具有较强特异性与较高灵敏度的特点,作为药物残留免疫研究的新手段得到广泛关注。目前还未见有关NFLX的荧光免疫分析方法的报道,本实验在自制NFLX人工抗原的基础上[7],免疫BALB/c小鼠,获得高效价具有特异性的单克隆抗NFLX抗体,建立了NFLX的间接竞争荧光免疫分析方法(IC-FIA),并将其应用于对鱼肉中收稿日期: 2012-04-01

基金项目:福建省科技合作计划重点项目(2011Y0035),福建省科技计划项目(2010Y2004)

作者简介: 余宇燕(1973-),女,博士,副教授,研究方向: 药物分析新技术和新方法

残留此类抗生素的检测。

1 实验部分

1.1 材料与仪器

TGL-16G 型高速离心机(上海安亭科学仪器厂); PHS-3C 型精密 pH 计(上海精密科学仪器有限公司); Flx-800 荧光酶标仪(BIO-TEK); 磁力搅拌器(上海南汇 电讯器材厂); 微量移液器(上海求精生化试剂仪器有限公司); 96 孔荧光酶标板(基因有限公司)

诺氟沙星(AR,中国药品生物制品检定所);诺氟沙星人工抗原(自制);牛血清白蛋白(BSA, Sigma公司);卵清蛋白(OVA, Sigma公司);弗氏完全佐剂及弗氏不完全佐剂(Sigma公司);异硫氰酸荧光素标记羊抗鼠 IgG (FITC-IgG,华美生物工程公司);辣根过氧化酶标记羊抗鼠 IgG (HRP-IgG,华美生物工程公司);0.05 mol/L pH 9.6 碳酸盐缓冲溶液(CBS);0.01 mol/L pH 7.4 磷酸盐缓冲溶液(PBS);pH 4.0 乙酸乙酸钠缓冲溶液。

试验动物 BALB/c 雌性小鼠(6~7 周龄),由福建中医药大学实验动物中心提供。SP 2/0 骨髓瘤细胞(上海友科生物技术公司)

1.2 实验方法

1.2.1 单克隆抗体的制备

将 1 mg/mL 的 NFLX-BSA 与等量弗氏完全佐剂混合形成油包水乳化液,以 50 μL 腹腔注射,免疫BALB/c 雌性小鼠,共 5 只。2 周后进行第 1 次加强免疫,将弗氏完全佐剂改为弗氏不完全佐剂,方法同上。以后每隔 2 周进行 1 次加强免疫。第 3 次加强免疫 4 d后眼球内眦采血,将所采得的血液置于硅烷化Eppendorf离心管中,于 10000 r/min 离心 5 min,分离血清,进行抗体效价测定和特异性检测。取效价和特异性都较好的一只小鼠进行加强免疫,4 d后取脾细胞与 SP 2/0 骨髓瘤细胞进行细胞融合。经过筛选、克隆得到能稳定分泌抗体的杂交瘤细胞株,并制备腹水。腹水室温静置 1 h,4 ℃静置过夜,以 3000 r/min 离心 10 min,弃脂肪层和细胞层,收集中间澄清的抗体层。1.2.2 抗体的纯化及鉴定

抗体的纯化采用辛酸-硫酸铵二步沉淀法^[6],将纯化后 IgG 稀释至适当的浓度,用紫外分光光度计分别测定抗体蛋白的浓度。采用双向琼脂扩散法鉴定抗体的性质;采用 ELISA 法测定抗体与抗原的结合效价^[7,8]。

1.2.3 标准曲线的建立

根据 IC-FIA 选取的最佳抗原抗体工作浓度及优化后的反应条件,绘制 NFLX 的 IC-FIA 标准曲线。

在 96 孔酶标板上,每孔加入 $100\,\mu$ L 含有 $2\,\mu$ g/mL 抗原的 CBS,4 $^{\circ}$ C过夜,将包被好的板取出,待其恢复至室温,PBST(PBS 加吐温-20)洗板 3 次;每孔加入 1% OVA 封闭液 $200\,\mu$ L,37 $^{\circ}$ C,温育 $1\,h$,洗板 3 次;另取 $50\,\mu$ L 诺氟沙星系列标准液和 $50\,\mu$ L 抗体(稀释度 1:1000),在玻璃小试管中混合,37 $^{\circ}$ C温育 $1\,h$ 后,每孔加入 $50\,\mu$ L,温育 $0.5\,h$,洗板 $3\,\chi$;每孔加入 $100\,\mu$ L 的 FITC-IgG 二抗(稀释度 1:1000),温育 $1\,h$,洗板 $5\,\chi$;置荧光酶标仪上读数。

根据抑制率对 NFLX 浓度作图,得到 NFLX 的抑制曲线。抑制率根据如下公式计算:

$$I\% = \frac{(F_{Max} - F_{Min}) - (F_{S} - F_{Min})}{(F_{Max} - F_{Min})} \times 100$$

注: I-抑制率; F_{Max}-不加 NFLX 样品时的吸光值; F_S-加 NFLX 样品时的荧光值; F_{Minr}对照孔的荧光值。

在线性范围内,根据抑制率与 NFLX 之间的对数 关系作图,得到标准曲线。通过回归分析,建立回归 方程F=A logC+B,计算抑制中浓度 IC50和检测限 IC20, 并进行相关分析。

1.2.4 抗体特异性考察

选择具有类似结构的喹诺酮药物,采用所建立的 IC-FIA 方法,进行间接竞争性抑制实验。按公式计算 各自的抑制率 I,绘出抑制曲线,根据标准抑制曲线 通过回归方程计算 50%抑制的各竞争物浓度 IC₅₀,比较它们抗体的特异性,同时根据公式计算其它竞争物对 NFLX 的交叉反应率 CR%^[9]。

1.2.5 添加回收率试验

取市购鲫鱼、鲤鱼、鳗鱼各一条,除内脏洗净,绞碎混匀后准确称取1 g匀质样品,加入10 mL pH3 HC1溶液,超声波振荡提取30 min,离心,用定性滤纸过滤,移取滤液1 mL用PBS溶液定容到10 mL容量瓶中。用本实验建立的方法测定添加回收率。

2 结果与讨论

2.1 抗体效价的确定

ELISA法检测抗NFLX单克隆抗体的效价,以未免疫的小鼠血清作为阴性对照。如图1,抗NFLX单克隆抗体的效价约为1.28×10⁵。

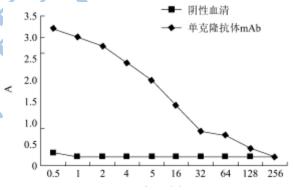


图1 抗NFLX单抗效价检测

Fig.1 Titer of monoclona l antibody(mAb) against NFLX determined in ELIS A

2.2 抗体特异性考察

在最佳的包被抗原与抗体浓度下,加抗体的同时加入 NFLX 或其他结构类似化合物,再用 IC-FIA 法检测 NFLX 及类似物对制备所得的 NFLX 多克隆抗体的交叉反应情况。试验结果表明抗 NFLX 抗体的特异性良好,如表 1 所示。

2.3 标准曲线的绘制

将 NFLX 标准溶液稀释成系列浓度,在最佳工作条件下,用 IC-FIA 法测定不同浓度 NFLX 对 NFLX-BSA 抗原抗体结合的标准抑制曲线,如图 2 所示。结果抑制率与 NFLX 的浓度的对数值呈显著的线性关系,线性范围: $10~500~\mu g/L$,回归方程为:I=31.92C-5.0083,相关系数 I=0.9965, $IC_{50}=52.88~\mu g/L$,

检测限 IC20=6.09 µg/L。

表1 NFLX抗体对不同结构类似物的交叉反应

Table 1 Cross-reactivity with different fluoroquinolones by indirect competitive FIA

	药物	诺氟沙星	氧氟沙星	恩诺沙星	依诺沙星	洛美沙星	环丙沙星	芦氟沙星	
	交叉反应率/%	100	3.1	0.83	0.04	1.5	0.12	2.8	
100					明,NFLX	的IC-FIA法	检测的线性	生范围为10~	-5

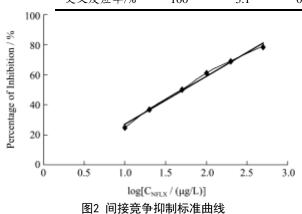


Fig.2 Standard curves of NFLX by indirect FIA

2.4 回收率试验

将已知浓度的 NFLX 添加到各样品中,采用 IC-FIA 法检测,检测结果如表 3。

表2 样品的添加回收率试验结果

Table 2 Recovery of NFLX add to soil samples by FIA

样品	添加浓	测得浓	口小家(0)	CV/%	
什四	度/(mg/kg)	度/(mg/kg)	回收率/%		
	0.05	0.934	93.4	6.54	
鲫鱼	0.1	4.737	94.7	4.85	
	0.2	18.78	93.9	3.79	
	0.05	0.898	89.8	7.36	
鲤鱼	0.1	4.565	91.3	4.17	
	0.2	20.48	102.4	2.85	
	0.05	0.906	90.6	5.54	
鳗鱼	0.1	5.325	106.5	3.17	
	0.2	19.44	97.2	3.32	

由表 2 可知,添加不同浓度的 NFLX 样品,用 FIA 法测定 NFLX 的回收率在 89.8%~106.5%之间,变异 系数在 2.85~7.36 之间,满足对样品中 NFLX 残留的 检测要求。

3 结论

本研究制备了高效价的NFLX单克隆抗体。确定了 抗原抗体最佳工作浓度,建立了检测动物性食品中残 留NFLX含量的间接荧光免疫分析标准曲线。结果表 明,NFLX的IC-FIA法检测的线性范围为10~500 μg/L; 灵敏度为6.09 μg/L; 变异系数范围为2.85~7.46%; 交叉反应率CR≤3.1%; 回收率范围为89.8~106.5%。与目前国内外报道的仪器分析方法比较. 本方法的最主要优点在于不需要复杂的样品前处理,分析成本低,快速简便等优点,能够满足对食品中微量NFLX的检测要求,并适宜于对现场及实验室大批量样品进行快速测定。

参考文献

- [1] 林东昉,王明贵.喹诺酮类抗菌药的研究进展[J].新医学, 2007,38(1):49-50
- [2] 梁健健,吴小青.一阶导数紫外分光光度法测定诺氟沙星滴 眼液的含量[J].药学院学报,2002,18(3):203-204
- [3] 郭子英,王尚芝,梁国熙.火焰原子吸收光谱法间接测定诺 氟沙星[J].化学分析计量,2003,12(1):22-23
- [4] 周源,冯育林.胶束薄层荧光法同时测定体液中诺氟沙星和 氟罗沙星含量的研究[J].分析测试学报,2004,23(2):81-83
- [5] C Kowalski, Z Roliski, T Sawik, et al. Determination of Norfloxacin in Chicken Tissues by HPLC with Fluorescence Detection [J]. Journal of Liquid Chromatography & Related Technologies, 2005, 28(1): 121-135
- [6] 林峰,林海丹,吴映璇,等.LC-MS-MS 测定烤鳗中 4 种氟喹 诺酮药物残留量[J].分析测试学报,2004,23(5):43-47
- [7] 王莹,杨智洪.诺氟沙星间接 ELISA 检测方法的建立及初步应用[J].中国兽医杂志,2007,43(3):52-53
- [8] 贾世玉,刘俊华.正辛酸与硫酸铵两步沉淀法纯化腹水单克隆抗体 IgG[J]中国兽医杂志,1991,17(10):6
- [9] 周先碗,胡晓倩.生物化学仪器分析与实验技术[M].北京:化 学工业出版社,2003
- [10] 柳忠辉,吕昌龙.免疫学常用实验技术[M].北京:科学出版社, 2002
- [11] A Oubiña, D Barceló, MP Marco. Competitor Design Influences Immunoassay Specificity: Development and Evaluation of an Enzyme Linked ImmunoSorbent Assay for 2,4-Dinitrophenol [J]. Anal. Chim. Acta, 1999, 387: 266-279