PCR-DGGE 技术对中华开菲尔微生物菌群的分析

林晓珊¹, 阮征², 刘飞¹, 张毅¹

(1. 华南理工大学生物科学与工程学院,广东广州 510006)(2. 华南理工大学轻工与食品学院,广东广州 510640) 摘要:为了解中华开菲尔微生物菌群的结构特征,本论文运用聚合酶链式反应-变性梯度凝胶电泳 (PCR-DGGE) 技术对开菲尔 菌株发酵过程中微生物菌群的结构变化进行了实验分析,结果表明:细菌菌群 DGGE 图谱上出现有三种不同迁移位置的斑带,而酵 母菌群 DGGE 图谱上只有一条斑带;经过 DNA 序列的对比分析可知:细菌菌群分别为肠膜明串珠菌(Leuconostoc mesenteroides)、马 乳样乳杆菌(Lactobacillus kefiranofaciens)和开菲尔乳杆菌(Lactobacillus kefir),它们的序列同源性都达到 100%;酵母菌群为德尔布有 孢圆酵母(Torulaspora delbrueckii),其序列同源性为 99%。本论文首次报道了德尔布有孢圆酵母在开菲尔菌落中的存在。

关键词:开菲尔菌群; PCR-DGGE; 群落结构

文章篇号: 1673-9078(2013)6-1217-1221

Analysis of Microbial Community Structures in Kefir Grains By

PCR-DGGE Techniques

LIN Xiao-shan¹, RUAN Zheng², LIU Fei¹, ZHANG Yi¹

(1.College of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China) (2.College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China)

Abstract: The dynamic variation of microbial flora in kefir liquor during its fermentation was studied by PCR-DGGE technique. The analysis result showed that 3 different visible bands in bacteria community and only 1 band in yeast community were obtained in their electrophoresis pattern. Anaysis of 16SrDNA sequence blast showed that these sequences of all 3 different visible bands had a high homology with the sequence of 16S rDNA of *lactic acid bacteria* (LAB). They belonged to *Leuconostoc mesenteroides, Lactobacillus kefiranofacien* and *Lactobacillus kefir*. The sequence of the band in yeast community had a high homology with the 16S rDNA of yeast *Torulaspora delbrueckii* Yeast *Torulaspora delbrueckii* effective.

Key words: kefir grains; PCR-DGGE; microbial community structure

开菲尔(Kefir)^{[11}是一种古老而新型的自然发酵 乳制品。以牛乳为主要原料,添加开菲尔粒状发酵剂, 经发酵而成的具有爽快酸味、香气的起泡性含醇保健 饮品。"Kefir"在高加索地区有"爽快美好口味"之 意,被誉为"发酵乳中之香槟"^[2]。由于开菲尔具有 独特的风味、营养、生理和保健功效,因此开菲尔奶 的研究开发,受到了广泛的关注。

PCR-DGGE指纹技术是聚合酶链式反应与变性 梯度凝胶电泳相结合发展起来的一种分子指纹图谱技 术,1993年Muyzer等人^[3]首次将DGGE技术应用于微 生物生态群落结构的研究,之后DGGE技术迅速扩展 收稿日期:2013-02-28

基金项目: 广东省教育部产学研结合重点项目(2011A090200041);华南理 工大学教研项目(x2sw1100040)

作者简介:林晓珊(1972-),女,高级实验师,主要从事工业微生物学研究 通讯作者:张毅(1964-),男,博士,副教授,主要从事发酵工程、生物制 药研究 到微生物分子生态学研究的许多领域,目前已经发展 成为研究微生物群落组成及亲缘关系的主要分子工具 之一^[4-5],在揭示自然界微生物区系的遗传多样性和种 群差异方面具有独特的优越性。开菲尔粒是一个由大 量的细菌共生体系组成的复杂的小微生态环境^[6]。开 菲尔微生物菌相及组成比较复杂,其微生物的组成受 来源及培养条件的影响。自从Ampe于1999年首次将 PCR-DGGE指纹图谱技术应用于食品微生物的研究 以来^[7],该技术在国内外已被广泛用于传统发酵食品 中微生物种群结构和种群动力学研究^[8]。本研究运用 PCR-DGGE技术通过对开菲尔发酵乳中微生物菌群 结构分析,以期获得的新的群落,为以后更好地开发 应用提供理论依据。

- 1 材料与方法
- 1.1 实验材料

中华开菲尔粒,本实验中心保藏。

现代食品科技

1.2 试剂

重铬酸钾标准溶液;硫酸亚铁铵标准溶液(使 用前标定);硫酸-硫酸银溶液;1mol/LTris-HCl;0.5 mol/LEDTA (pH 8.0);TE (pH 8.0);10% SDS (pH 7.2);1%琼脂糖凝胶;50×TAE缓冲液;1% CTAB; DGGE固定液;DGGE染色液;DGGE显影液;10% APS (过硫酸铵)溶液。

1.3 仪器设备

HITACHI 公司 CR22G 高速冷冻离心机; Eppendorf 公司 Mastertycler型 PCR 扩增仪; Bio-Rad 公司Universal Hood II型凝胶成像仪; Bio-Rad 公司 Power Pac型DNA电泳仪; Bio-Rad 公司 D code型 DGGE 电泳 仪。

1.4 开菲尔发酵乳样品准备

将保存于无菌脱脂牛奶中的开菲尔粒用无菌金属 滤网滤出,按照5%(m/V)的量接种于新的10%(m/V) 的无菌脱脂牛奶中,置于25℃生化培养箱中培养24h, 重复活化三次后,重新接种培养24h,发酵过程中每 隔4h取一次样,样品标记为:0h、4h、8h、12h、 16h、20h、24h。所取样品一部分用于理化性质测定, 一部分用于基因组提取。

1.5 开菲尔发酵乳中 DNA 提取

细菌基因组提取采用溶菌酶法提取^[9];酵母菌基 因组提取采用玻璃珠法提取^[10]。

1.6 PCR 扩增

细菌PCR扩增区域为细菌16S rDNA的V3区^[11],采 用341F/518R引物,序列为:GC341f(5'-CGC CCG CCG CGC CCC GCG CCC GTC CCG CCG CCC CCG CCC G CCT ACG GGA GGC AGC AG-3'),518r (5'-ATT ACC GCG GCT GCT GG-3');酵母PCR扩增区域为酵 母26S rDNA的D1区^[12],采用NL1/LS2引物,序列为: GC-NL1 (5'-GCG GGC CGC GCG ACC GCC GGG ACG CGC GAG CCG GCG GCG ACC GCC GGG ACG CGC GAG CCG GCG GCG GGC CAT ATC AAT AAG CGG AGG AAAAG-3'),LS2(5'-ATT CCC AAA CAA CTC GAC TC-3');下划线部分为GC夹,上述引 物均由 Invitrogen 合成。PCR反应程序采用降落式 PCR^[13]。PCR扩增体系见表1。

降落PCR程序为^[14]: 95 ℃预变性5 min; 95 ℃变 性1 min, 65 ℃退火45 s, 之后每个循环降低0.5 ℃, 一共20个循环, 72 ℃延伸1 min,;最后10个循环参数 是95 ℃变性1 min, 55 ℃退火45 s, 72 ℃延伸1 min; 最后72 ℃伸长8 min。

- 1.7 变性梯度凝胶电泳及图谱分析
- 1.7.1 变性梯度凝胶电泳 (DGGE)

采用 BIO-RAD Dcode TM Universal Mutation

Detection System基因突变检测系统对PCR产物进行检测,其中凝胶的丙烯酰胺凝胶浓度为8%,变性剂浓度为30~60%,电泳条件为100 V,60 ℃,10 h。 表1 PCR扩增体系

Table 1 The PCR amplification system

试剂	用量/µL			
rTaq酶	0.25			
PCR buffer	5.00			
dNTP	4.00			
上游引物GC341F(20 µM)	0.50			
下游引物518R(20μM)	0.50			
模板	1.00			
灭菌dH2O	То 50			

1.7.2 切胶回收以及 PCR 扩增

对DGGE电泳后图谱上的优势条带进行切胶回收。 对于选定的每个条带,只切割其中间部分。回收的条 带转移到PCR管中,加入30μL的TE缓冲液(或者双蒸 水)用枪头挤碎,4℃浸泡过夜,取1μL为模板按照16S rDNA的V3区降落式PCR反应体系和程序再次扩增^[15], 用DGGE检查回收条带的纯度和分离状况。重复上述步 骤,直到有满意的结果为止。

1.7.3 DNA序列分析

以最后获得的单一条带为模板,用不带GC发夹的 引物扩增,得到的PCR产物送Invitrogen公司测序,将 测得的16S rDNA的V3区序列在NCBI上比对,得出相 关种属的序列信息。用clustal X软件对未知菌株的序列 与相似菌株的序列进行匹配排列(align),用Mega软件 的neighbor-joining (NJ)来构建系统发育树,进行1000 次Bootstraps检验。

2 结果与讨论

2.1 开菲尔发酵乳中细菌基因组 DNA 提取

图 1 不同发酵阶段开菲尔乳中细菌基因组 DNA 的琼脂糖凝胶电 泳图

Fig.1 Agarose gel electrophoresis of bacterial genomic DNA extracted from different kefir samples(M: λ-Hind Ⅲ digest) 用溶菌酶法提取不同发酵阶段的开菲尔乳样品基 因组,提取的基因组用1%的琼脂糖凝胶电泳检测,结 果如图1所示。6个阶段的基因组DNA片段大小都在23 kb附近,与预期的片段大小相符,且条带明亮。 2.2 开菲尔发酵乳中酵母基因组 DNA 提取

由于酵母细胞壁比细菌细胞壁难于破裂,而细胞 破壁是基因组提取好坏的关键,为了提高所提取的 DNA浓度,本文采用了操作简单,成本低廉的玻璃珠 法。结果如图2。

图 2 不同发酵阶段开菲尔乳中酵母基因组 DNA 的琼脂糖凝胶电 泳(玻璃珠法)

Fig.2 Agarose gel electrophoresis of yeast genomic DNA extracted from different kefir samples using the method of

grinding with glass beads (M:λ-Hind Ⅲ digest) 2.3 开菲尔粒发酵过程中细菌群落结构变化的 DGGE 图谱分析

图 3 开菲尔粒发酵过程中细菌群落结构变化的 DGGE 指纹图谱 以及条带识别示意图

Fig.3 DGGE fingerprinting and compare lane images of dynamics of the bacterial community during fermentation of kefir grains

kefir grains

图3为开菲尔发酵过程中细菌群落的DGGE指纹 图谱。由图可知,本实验研究的开菲尔样品中细菌种 群结构不是很复杂,发酵8h、12h和16h样品中都 只出现了3个条带,其他阶段仅有2个条带出现;条 带LF1和LF3的亮度随发酵过程呈先增后减趋势,条 带LF3在发酵8h时才慢慢开始出现,条带LF2在整 个发酵过程中都存在,并且相对于条带LF1、LF2, 其亮度很大,可以断定它为开菲尔粒发酵过程的绝对 优势菌。以泳道3为参照,对比出的细菌群落结构相 似性在80.5~96.4%之间。

表 1 发酵过程中不同阶段发酵乳样品的细菌种群相似系数 (Cs)

Table 1 Comparability index of bacterial community from

different kefir samples

	Lane	1	2	3	4	5	6
	1	100	80.6	84.1	82.1	84.4	85.4
	2	80.6	100	96.4	91.5	81.3	82.1
	3	84.1	96.4	100	91.2	80.5	81.3
	4	82.1	91.5	91.2	100	89.8	90.6
	5	84.4	81.3	80.5	89.8	100	99
	6	85.4	82.1	81.3	90.6	99	100
).84	0.86	0.88	0.90 (0.92	0.94	0.96 0	.98 1.00

分析

Fig.4 Cluslering analysis of bacterial community from different kefir samples

表1和图4为开菲尔粒发酵过程中不同阶段发酵 乳样品的细菌种群相似性比较,可以看出,不同样品 的细菌群落结构相似性在80.6~99.0%之间,泳道1和 泳道2的群落相似性最低,仅为80.6%,表明这两个 阶段细菌群落变化相对较大;泳道5和泳道6的群落 相似性最高,达到了99%,表明这两个阶段细菌群落 变化较小。

图 5 开菲尔发酵乳中细菌群落的系统发育树

Fig.5 Phylogenetic tree of bacterial community from kefir samples

将条带 LF1、LF2、LF3 切胶回收,送 Invitrogen 测序,在 NCBI 上比对后构建系统发育树如图 5,所

Modern Food Science and Technology

2013, Vol.29, No.6

研究的 DNA 序列与已知 DNA 序列的同源性均为 100%,都为乳酸菌,条带 LF1、LF2、LF3 对应的细 菌分别为肠膜明串珠菌(Leuconostoc mesenteroides)、 马乳样乳杆菌(Lactobacillus kefiranofaciens)、开菲尔 乳杆菌(Lactobacillus kefir)。

2.4 开菲尔发酵过程中酵母群落结构变化的DGGE图 谱分析

图 6 开菲尔粒发酵过程中酵母群落结构变化的 DGGE 指纹图谱

Fig.6 DGGE fingerprinting of dynamics of the yeast community during fermentation of kefir grains

图 6 为开菲尔发酵过程中酵母群落的 DGGE 指纹 图谱。由图可知,样品中酵母种群不丰富,6个泳道均 只有一个条带,且条带在 DGGE 图谱上的同一水平位 置,表明在整个发酵过程中只有一种酵母菌在生长代 谢,经测序得到与条带 XP 所对应的酵母菌最接近的菌 种为德尔布有孢圆酵母(*Torulaspora delbrueckii*),同 源性为 99%。这种酵母在国内类似研究中还从未报道 过。

条带 XP 对应的 DNA 序列:

CTATGGCCATATCAATAGCGGAGGAAAAGA AACCAACCGGGATTGCCTTAGTAACGGCGAGTG AAGCGGCAAAAGCTCAAATTTGAAATCTGGTAC CTTCGGTGCCCGAGTTGTAATTTGTAGAAGGTAA CTTTGGGGCTGGTCCTTGTCTATGTTCCTTGGAA CAGG ACGTCATAG AGGGTGAGAATCCCGTGTGG CGAGGATCCCAGTTCTTTGTAAAGTGCTTTCGAA GAGTCGAGTGGTTTGGGAAATGA

3 结论

开菲尔粒发酵过程中细菌群落的 DGGE 指纹图谱 表明本实验研究的开菲尔样品中细菌种群结构不是很 复杂,整个发酵过程中只有3条不同迁移位置的条带。 发酵4h和发酵8h的群落相似性最低,仅为80.6%; 发酵8h、12h和16h时样品的群落相对比较丰富,都 只出现了3个条带,其他阶段仅有2个条带出现;通 过开菲尔粒发酵过程中不同阶段发酵乳样品的细菌种 群相似性比较,不同样品的细菌群落结构相似性在 80.6~99.0%之间,发酵16h时和发酵20h时的群落相 似性最高,达到了99%,表明这两个阶段细菌群落变 化较小。细菌目的条带切胶回收测序结果显示所研究 的DNA序列与已知乳酸菌DNA序列的同源性均为 100%,分别为肠膜明串珠菌(Lactobacillus kefiranofaciens)、马乳样乳杆菌(Lactobacillus kefiranofaciens)、开菲尔乳杆菌(Lactobacillus kefir)。 开菲尔粒发酵过程中酵母群落的DGGE指纹图谱显示 样品中酵母种群不丰富,6个泳道均只有一个条带,且 条带在DGGE图谱上的同一迁移位置,表明在整个发 酵过程中只有一种酵母菌在生长代谢,经测序得到与 条带 XP所对应的酵母菌最接近的菌种为德尔布有孢 圆酵母(Torulaspora delbrueckii),同源性为99%。这 种酵母在国内类似研究中还从未报道过。

参考文献

- Veronique Ninane, Gilbert Berben, Jean-Michel Romnee, et al.
 Variability of the microbial abundance of a kefir grain starter cultivated in partially controlled conditions [J]. Biotechnol Agron Soc Environ, 2005, 9(3): 191-194
- [2] 周传云,聂明,万佳蓉.古老而新型的发酵奶-开菲尔食品与机 械[J].2003,5:46-47
- [3] Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology, 1993, 59(3): 695-700
- [4] Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology [J]. Antonie van Leeuwenhoek, 1998, 73, 1: 127-141
- [5] Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems [J]. Current Opinion Microbiology, 1999, 2: 317-322
- [6] 王荫榆,李会荣,贾士芳,等.应用变性梯度凝胶电泳和 16SrDNA序列分析对kefir粒中细菌多样性的研究[J].微生 物学报,2006,46(2):310-313
- [7] AMPE F, OMAR B N, MO IZAN C, et al. Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, a fermented maize dough demonstrates the need for cultivation-independent methods to investigate traditional fermentations [J]. Applied Environmental Microbiology, 1999, 65: 5464-5473

[8] ERCOLI N I D, H ILL P J, DODD C E R. Bacterial

community structure and location in Stilton cheese [J]. Applied and Environmental Microbiology, 2003, 69: 3540-3548

- [9] Luo JF, Lin WT, Guo Y. Method to detect only viable cells in microbial ecology [J]. Applied Microbiology and Biotechnology, 2009, 86(1): 377-384
- [10] 戈海泽,郭刚,张瑞,等.玻璃珠法提取基因DNA[J].天津医科 大学学报,2006,12(2):313-314
- [11] 刑德峰,任南琪,宋佳秀,等.不同16S nDNA靶序列对DGGE分 析活性污泥群落的影响[J].环境科学,2006,27(7):1424-1428
- [12] Cocolin L, Aggio D, Manzano M, et al. An application of

PCR-DGGE Analysis to profile the yeast populations in raw milk[J]. 2002a, 12: 407-411

- [13] Lin Weitie, Luo Jianfei, Guo Yong. Comparison and characterization of microbial communities in sulfide-rich wastewater with and without propidium monoazide treatment [J]. Current Microbiology, 2011, 62: 374-381
- [14] Siqing Xia, Yan Shi, Yigang Fu, et al. DGGE analysis of 16S rDNA of ammonia-oxidizing bacteria in chemical-biological flocculation and chemical coagulation systems [J]. Appl Microbiol Biotechnol, 2005, 69: 99-105

欢迎订阅 EI 收录期刊、中文核心期刊 《现代食品科技》

邮发代号: 46-349 刊号: JSSN 1673-9078/CN 44-1620

每期定价 15 元,全年 12 期仅 180 元。欢迎食品及相关行业的机构和科学工作者到各地邮局订阅,并踊跃投 稿或建立广告宣传和产学研合作关系。

> 地址: 广州五山华南理工大学轻工与食品学院麟鸿楼 508, 邮编: 510640 电话: 020-87112373, 87113352, 87112532 E-mail: xdspkj@vip.sohu.com